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Motivation: Many clinical and scientific conclusions that rely on voxel-wise analyses of neuroimaging depend on 

the accurate comparison of corresponding anatomical regions. Such comparisons are made possible by registra- 

tion of the images of subjects of interest onto a common brain template, such as the Johns Hopkins University 

(JHU) template. However, current image registration algorithms are prone to errors that are distributed in a 

template-dependent manner. Therefore, the results of voxel-wise analyses can be sensitive to template choice. 

Despite this problem, the issue of appropriate template choice for voxel-wise analyses is not generally addressed 

in contemporary neuroimaging studies, which may lead to the reporting of spurious results. 

Results: We present a novel approach to determine the suitability of a brain template for voxel-wise analysis. The 

approach is based on computing a “distance ” between automatically-generated atlases of the subjects of interest 

and templates that is indicative of the extent of subject-to-template registration errors. This allows for the filtering 

of subjects and candidate templates based on a quantitative measure of registration quality. We benchmark our 

approach by evaluating alternative templates for a voxel-wise analysis that reproduces the well-known decline in 

fractional anisotropy (FA) with age. Our results show that filtering registrations minimizes errors and decreases 

the sensitivity of voxel-wise analysis to template choice. In addition to carrying important implications for future 

neuroimaging studies, the developed framework of template induction can be used to evaluate robustness of data 

analysis methods to template choice. 
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. Introduction 

Image registration is the mapping of images onto a common co-

rdinate space with the goal of aligning their homologous regions

 Oliveira and Tavares, 2014 ; Sotiras et al., 2013 ). Accurate image reg-

stration is particularly important in voxel-wise analyses of brain mag-

etic resonance images (MRIs), where the current standard of practice

s to have the images of the subjects of interest mapped onto a “tem-

late ” image such as the Johns Hopkins University (JHU) brain template

 Hua et al., 2008 a; Mori et al., 2009 ). Correct and precise mappings are

ecessary in order to make valid statistical inferences about spatial dif-

erences in MRI-derived parameters (e.g. fractional anisotropy (FA)).

his represents a central task in medical image analysis: the imaging of

 patient can be compared to the imaging of a healthy control group

o identify the patient’s structural or functional differences that may
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Nonlinear mathematical functions that carry out the mapping from

ne brain to another during registration are called morphisms. The neu-

oanatomical variability among individuals and signal noise in the im-

ge acquisition process virtually ensure that the anatomy of one brain

an never be exactly mapped onto the anatomy of another in a voxel-by-

oxel fashion ( Klein et al., 2009 ; Grachev et al., 1999 ; Ardekani et al.,

005 ; Suri et al., 2015 ); morphism/registration misalignments leading

o errors will always be present. In addition, due to neuroanatomi-

al variability, the exact set of registration errors differs depending on

he brains being aligned ( Despotovic et al., 2015 ; Suri et al., 2015 ;

rum et al., 2004 ), implying that the results of template-based voxel-

ise analyses are sensitive to the choice of the template image. Thus,

oxel-wise analysis may be more accurate for sets of brains that have

inimal errors in the morphisms that relate them to one another. 
ber 2020 
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Fig. 1. Locations of low FA clusters (red) in a patient with mild traumatic brain 

injury obtained by voxel-wise analysis using subject-based registration (sBR) 

with the subject’s T1W image as template and atlas-based registration with the 

MNI (aBR-MNI) and JHU (aBR-JHU) templates. The arrow highlights an FA clus- 

ter found only when using the MNI template. ( Adapted from ( Suri et al., 2015 ) . 

Permission to reuse granted by Creative Commons Attribution License CC BY). 
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A long-standing approach to mitigating voxel-wise registration er-

ors has been to report MRI measurements in terms of their values at

lusters of adjacent voxels rather than individual voxels ( Friston et al.,

994 ). Nevertheless, it was recognized over fifteen years ago that the

resumed correspondence of neuroanatomical regions between subjects

nd a chosen template can harm the validity of brain MRI voxel-wise

nalyses because of the unknown distributions of registration errors

 Crum et al., 2003 ), which are specific to subject-template pairs. Depen-

ence of the registration errors on the subjects and template highlights

he importance of subject-specific analysis and judicious template se-

ection in voxel-wise imaging studies ( Suri et al., 2015 ; Mayer et al.,

018 ; Viviani et al., 2007 ; Douaud et al., 2011 ; Keihaninejad et al.,

012 ). As an example, a previous study by our group examined the ef-

ects of template choice on the voxel-wise analysis of a set of patients

ith mild traumatic brain injury, which are expected to have clusters

f low FA arising from residual white matter injury ( Suri et al., 2015 ).

his study showed that voxel-wise FA cluster analyses over the JHU

nd Montreal Neurological Institute (MNI) ( Aubert-Broche et al., 2006 )

emplates found many more locations of low FA clusters than the anal-

sis using subject-based templates ( Fig. 1 ). Furthermore, the locations

f most low FA clusters over the JHU and MNI templates disagreed and

ere found to correlate with the locations of misregistered voxels. On

he other hand, the FA clusters that agreed between the JHU and MNI

emplates also agreed with the locations found by the subject-based tem-

late. A general approach to study-specific template selection is to find

r create a template to which registration errors from the subjects can

e identified as being below some quantitative threshold. 

Methods of registration error quantification are fundamentally based

n measuring the displacement between the positions of voxels compris-

ng specific expert-defined anatomical landmarks, and include Bayesian

 Risholm et al., 2013 ), machine-learning-based ( Muenzing et al., 2012 ;

earney et al., 2018 ), and analytical ( Datteri et al., 2015 ) approaches.

rror estimation methods have been commonly used in a variety of med-

cal applications requiring repeated or real-time image guidance, such as

urgery and cancer radiotherapy ( Hoffmann et al., 2014 ; Mascott et al.,

006 ; Elhawary et al., 2010 ). Importantly, these applications depend

n the quantification of registration errors between different images of

he same patient taken at different times, with potential alteration of

rain shape due to the procedure. To our knowledge, only a few previ-

us studies have explicitly focused on the effects of template-dependent

rrors on group-based voxel-wise analysis ( Keihaninejad et al., 2012 ;

cheson et al., 2017 ). For example, one study of patients exhibiting

eurodegeneration due to Alzheimer’s disease found that creating a

emplate based on a morphometric average of the study group led
2 
o fewer subject-to-template registration errors on voxel-wise analy-

is ( Keihaninejad et al., 2012 ). Another study of FA reproducibility in

he setting of tract-based spatial statistics assessed registration quality

etween their subjects and template by computing the average pro-

ection distance for a group-wide mean FA skeleton: having too great

f a distance to the FA skeleton suggests poor registration quality

 Acheson et al., 2017 ). The protocol in this study used a form of the

inimal deformation target (MDT) ( Hua et al., 2008 b; Kochunov et al.,

002 ): the creation of a template that minimizes the average morphome-

ric displacement to a specific set of subjects. While these methods may

e effective for groups of subjects that are highly similar to each other,

he ultimate output of morphometric averaging and MDT is dependent

n the specific morphism algorithm used and is not directly connected

o the suitability of the template. To illustrate, consider a mock mor-

hism algorithm that does not transform the study group subjects at all

an identity function): the morphometric average would correspond to

irectly averaging non-registered study group images, yielding a non-

ensical template image to which further registrations would also be

on-sensical. MDT would find this template acceptable because defor-

ations are identically zero. The FA skeleton projection step would de-

ect large misalignments. Even though these methods have been found

o be helpful for template construction, the overarching issue of spe-

ific template choice and quality of registrations to it is not commonly

onsidered in the current literature, which is concerning given the high

otential for the reporting of false positive and negative findings. 

Two main difficulties arise in studying and addressing the influence

f template choice on the results of voxel-wise analyses based on de-

ormation of images to the template: the absence of “ground truth ” an-

wers and the voxel-wise comparison of results obtained over different

ndividual candidate templates. To be compared, all results must first

e morphed to a common “master template ”, something which cannot

e accomplished without morph errors. In the presence of morph er-

ors, observed discrepancies cannot be unambiguously attributed to the

oor choice of an individual candidate template because they can be

otentially explained by poor registration of that template to the mas-

er template. Similarly, results of a voxel-wise analysis over the master

emplate cannot be considered “ground truth ” because of morph errors

uring registration of the subject data to the template. If morph errors

ould be “turned off” during generation of the ground truth and dur-

ng registration of the results over individual candidate templates to the

aster template, then the morph errors to the candidate templates could

e isolated for analysis ( Fig. 2 ). 

In this ideal scenario, spatial clusters obtained in a voxel-wise anal-

sis of the subject data morphed to the master template represent the

ground truth ”. The same analysis is performed over the various can-

idate templates and clusters are carried over to the master template

or comparison without misalignment. Since the subjects used in the

nalysis are always the same, and because there is no randomness in

he analysis, the degree to which these clusters match the ground truth

an be directly attributed to the suitability of the candidate templates.

ndeed, if the clusters match the ground truth, the candidate template

ay be termed as “good ”. Conversely, if the clusters do not match the

round truth, the candidate template may be termed as “bad ”. In turn,

he suitability of the candidate is determined by the individual mor-

hisms between subject brains and the template. This allows detailed

nalysis of the quality of the individual morphisms and development of

 criterion with which to screen and filter out aberrant transformations

hus converting a “bad ” template into a “good ” template, albeit for a

ubset of subjects. 

A related important and well-known issue that arises in template se-

ection is the potential for selection bias ( Thompson and Toga, 2002 ;

hompson et al., 2000 b): a given template may have intrinsic, but not

ecessarily observable, properties that cause it to be more favorable for

omparison with certain subgroups of subjects within a dataset. Con-

ersely, a template may generate inaccurate morphisms and thus be

 “bad ” template for an “outgroup ” within a dataset. For example, a
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Fig. 2. Ideal study design. An ideal study of the effects of template choice on 

voxel-wise analyses would allow the comparison of “ground truth ” defined over 

a master template to results obtained by first morphing data from a set of sub- 

jects to different candidate templates. The “ground truth ” would be obtained 

by applying an error-free, reversible morphism (black, double-headed arrows) 

to the set of subjects of interest. Template choice would then be uniquely in- 

dicated by differences in the errors of the morphisms from the subjects to the 

candidate templates (red, single-headed arrows). Results of analyses over the 

candidate templates would then be morphed exactly to the master template for 

comparison with the “ground truth ”. 
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emplate based on a young brain may introduce selection bias favoring

ther young brains due to their greater baseline anatomical similarity.

nother example would be when different MRI datasets are pooled to-

ether for a common analysis: the differences in data collection and post-

rocessing between datasets could cause a template constructed based

n a brain from one dataset to be biased against those of other datasets.

hile one possible approach to mitigate selection bias would be the cre-

tion of averaged templates for a dataset (e.g. by implementing MDT as

iscussed above), this may still not result in adequate morphisms be-

ause the averaged template may be too different from any individual

ubject; in other words, the template may be too “fuzzy ” ( Wu et al.,

016 ). While several approaches have been developed to attempt to

inimize the bias introduced by averaging ( Wu et al., 2016 ; Joshi et al.,

004 ; Lyu et al., 2015 ), no way of confirming the actual resulting bias in

 test dataset currently exists. Therefore, selection bias in the results of

hese approaches may go unnoticed throughout a data analysis pipeline

nd lead to false positive or false negative results. A morphism quality

easure would allow for the early detection of these errors and ade-

uately inform further data analyses. Potentially, it would also allow

nvestigation of the underlying reasons of the morph errors. 

Overall, the present study is organized into three main components:

) We define a “ground truth ” for benchmarking, 2) We propose a

orphism quality measure to make voxel-wise analyses more template-

ndependent, and 3) We evaluate effect of morphism quality filtering al-

orithm against the ground truth. Specifically, for component 1) we de-

eloped a template and subject induction process to manufacture the ex-

ct, error-free morphisms needed for ground truth generation and results

omparison across alternative candidate template choices ( Fig. 2 ). For

enchmarking, we elected to examine how template selection affects the

esults of a voxel-wise analysis based on deformation of images to a com-

on template that seeks to reproduce the well-known decline in white

atter integrity with age ( Pfefferbaum et al., 2000 ; Pfefferbaum and

ullivan, 2003 ; Fleysher et al., 2018 ; Kochunov et al., 2012 ). We use

A maps derived from diffusion tensor imaging as a marker of white

atter integrity in a set of young to middle-aged subjects that have

o brain pathology. For component 2), we investigate the sensitivity

f locations of voxel clusters where FA is significantly associated with

ge (FA clusters) to the choice of template. Poorly-registered images

re filtered out using a new morphism quality measure that utilizes an

verage of Haussdorf-like distances ( Garlapati et al., 2015 ) to compare
3 
reeSurfer-generated atlases of candidate templates and subjects mor-

hed onto them ( Fleysher et al., 2017 ). We hypothesize that this average

nter-atlas distance can characterize the extent of subject-to-template

egistration errors and determine the suitability of a candidate template

or voxel-wise analysis of a set of specific subjects. Finally, we evaluate

his hypothesis in component 3) by computing the Dice coefficient over-

ap ( Dice, 1945 ) between the FA clusters of the ground truth and the FA

lusters obtained over candidate templates of varying quality. Our re-

ults demonstrate that excluding poorly-registered images dramatically

ncreases the robustness of the voxel-wise analysis to the choice of tem-

late. 

. Materials and methods 

Data and Code Availability Statement: Data in this study was ob-

ained from the previously conducted Einstein Lifespan Study (ELS). All

hird-party code used in this work is available online and cited within

his work. 

Ethics Statement: The ELS was approved by the institutional review

oard of Albert Einstein College of Medicine. All participants provided

nformed consent in writing. 

.1. Imaging protocol 

We used 96 whole brain datasets from healthy 18–55-year-old par-

icipants (46% female) of the Einstein Lifespan Study, without known

rain pathology or history of neurological or psychiatric disorders. All

mages were reviewed by an experienced neuroradiologist and deter-

ined to be free of clinically significant structural abnormalities, in-

luding gross changes due to trauma, infection, or neoplasm. Imaging

as performed using a 3.0 T Philips Achieva TX scanner (Philips Med-

cal Systems, Best, The Netherlands) and its 32-channel head coil. The

maging protocol included: T1W: TR/TE/TI = 9.9/4.6/900 msec, flip

ngle 8 deg, 1 mm isotropic resolution, 128 × 116 × 220 matrix; DTI:

R/TE = 10,000 / 65 msec, 32 diffusion directions, b-value = 800 s/mm,

 mm isotropic resolution, 240 × 188 × 70 matrix; and field map to

orrect EPI-related distortions in DTI and small distortions in T1W:

R/TE = 20/2.4 msec, delta TE = 2.3 msec, flip angle 20 deg, 4 mm

sotropic resolution, 64 × 64 × 50 matrix. DTI data were corrected for

ddy current- and EPI-related distortions, followed by registration to the

ndividual’s T1W using FSL tools ( Jenkinson et al., 2012 ) as described

n ( Fleysher et al., 2018 ). All original images and intermediate results

ncluding brain extraction and intra-subject registration were visually

nspected by trained raters using a standardized procedure: raw images

ere inspected for signs of motion; brain extractions were examined in

he axial slice traversing them from the superior to the inferior aspect of

he brain; inspection of rigid body registrations began with large struc-

ures (ventricles and cerebellum) down to thin cortical sulci. All further

nalyses in the present work considered only the T1W images and FA

aps registered to them. 

.2. Registration framework 

The overall structure of the present study has been designed to iso-

ate the effects of subject-to-template registration errors on voxel-wise

nalyses of FA versus age ( Fig. 2 ). This was done by creating “induced ”

ubject and template images which have exactly-known transformations

o a “master template ” across which all FA analyses are compared. We

ecognize that morph errors between any two given brains, A and B, can

ever be turned off to implement the ideal set-up of Fig. 2 . However,

iven an image A, a morphism can be applied to transform it to another

mage B’. Image B’ does not match image B exactly, but the transforma-

ion between images A and B’ is exact by construction ( Fig. 3 A). When

e take A to be the master template, we refer to image B’ as the “in-

uced template ” with image B being the “inductor ”. Specifically, we

elected the JHU brain as the master template and morphed it onto the
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Fig. 3. Construction of induced templates and subjects. A) Registration algorithms 

do not allow for exactly-known morphisms between two brain images to be di- 

rectly computed (dashed arrow). Given two brains A and B, what can in fact be 

known exactly is a morphism from brain A to brain B’ (i.e. “brain B plus error ”); 

because this morphism is known exactly, it can be inverted (solid arrows). We 

utilize this principle to create exactly-known morphisms between the master 

template and the induced subjects and induced templates. B) Generation of in- 

duced templates. An error-free morphism between the “master template ” – the 

JHU brain – and an “inductor ” – an Einstein Lifespan Study (ELS) brain image –

would transform the master template perfectly to the inductor (dashed arrow). 

However, as in A), morph errors cause the output of the morphism to differ 

from the actual inductor brain, producing an “induced template ” (curved solid 

arrows) with exact mapping on the master template. This process is repeated 

for all 96 ELS brain images as inductors to produce 96 induced templates. C) 

Generation of induced subjects through a three-step protocol. (1) Morphisms 

are computed intending to bring 96 ELS brain images including T1W anatomy 

and FA data onto the master template (dashed arrow), but errors do not allow 

this computation to be direct (curved solid arrow to empty ellipse). (2) Instead, 

inversions of the morphisms produced in (1) are applied to the master tem- 

plate to generate T1W images of induced subjects. An induced T1W image is 

paired with original subject’s FA map to complete an induced subject dataset. 

(3) The inverted morphisms from (2) are paired with those in (1) to create an 

exactly-known set of reversible transformations between the master template 

and induced subjects (curved solid arrows). 
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4 
6 T1W images of the ELS as inductors to produce 96 induced templates,

hich we subsequently employed in this study as candidate templates

 Fig. 3 B). This implements one arm of the exact morphisms in Fig. 2 . 

A similar induction process is used for the second arm of the exact

orphisms in Fig. 2 to "turn off" morph errors between subjects and the

aster template. This is accomplished by “inducing ” the subjects and

onsists of the following 3 steps ( Fig. 3 C): 

1 Morphisms from each of the 96 ELS subjects to the master template

are computed and applied to the respective FA maps. Voxel-wise

statistical analysis over the master template will be performed using

these FA maps to obtain “ground truth ” clusters where FA is associ-

ated with age. Because registrations are not perfect, the FA clusters

so obtained are influenced by morph errors. However, we are not fo-

cused on studying FA dependence on age; we are using this known

association to ensure some clusters (real or artifactual) will be iden-

tified. Thus, we treat these morphisms as exact. 

2 The morphisms from step 1 are inverted; the inverted morphism is

applied to the master template to produce an induced T1W image

for each subject. 

3 Each induced T1W image is paired with its corresponding original

FA map to produce induced subject data. This completes subject in-

duction with an exact morphism to the master template. 

The procedures up to this point result in two parallel sets of exactly-

nown transformations: (i) between the master template and the 96 in-

uced templates and (ii) between the master template and 96 induced

ubjects as required in the ideal set-up ( Fig. 2 ). Finally, the main mor-

hisms of interest for the present study were generated by registering

ach of the 96 induced subjects to each of the 96 induced templates. This

esulted in a total of 9216 induced-subject-to-induced-template mor-

hisms whose errors’ effects on voxel-wise FA versus age analysis could

e investigated ( Fig. 4 ). 

.3. Registration algorithm and statistical analysis 

All registrations were non-linear and were performed using the

DWarper module from the Automatic Registration Toolbox (ART)

ackage ( Ardekani et al., 2005 ). Initial inverse morphisms were com-

uted using routines from ART, improved upon using an iterative al-

orithm as follows: given a morphism from brain A to brain B, and its

nverse from brain B to brain A’, iterations were continued until the dis-

lacement error (combined morphism between brains A and A’) was less

han 0.01 mm in 99.9% of voxels. Clusters of voxels where FA was signif-

cantly correlated with age were identified by performing a voxel-wise

 -test with gender as a covariate at a significance level of 0.005 and

etaining clusters of 100 or more contiguous voxels within the white

atter of the master template ( Suri et al., 2015 ; Hoptman et al., 2008 ).

.4. Atlas-distance-based morphism quality measure 

The ideal measure of quality for a morphism between two brains

ould be obtained by tracking how far each voxel on one brain maps

rom its homologous voxel on the other brain. If this were possible, the

oxel-wise displacement error obtained in the process would become a

orrection to the morphism, making it perfect. Therefore, to character-

ze the extent of induced-subject-to-induced-template morphism errors,

e calculated the average “distance ” between homologous anatomical

andmarks of the induced templates and the induced subjects morphed

nto them ( Fig. 5 A). For this purpose, each of the 96 induced templates

nd each of the 9216 induced subjects morphed onto them was seg-

ented using the ASEG module of FreeSurfer version 5.3 ( Fischl, 2012 ).

he atlases of the induced templates were defined as “reference atlases ”,

hile those of the induced subjects morphed onto the induced templates

ere defined as “query atlases ”. For each reference atlas corresponding

o a specific induced template, there were 96 query atlases coming from
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Fig. 4. Overall registration framework. We con- 

structed two sets of “exact ”, reversible mor- 

phisms between the master template and the 

induced subjects and induced templates (black 

double-headed arrows). The morphisms of in- 

terest for this study are those from each of the 

induced subjects to each of the induced tem- 

plates (red arrows). The outcome this study 

measures is the concordance of the locations of 

the induced subjects’ FA versus age clusters be- 

tween when they are directly morphed onto the 

master template ( “ground truth FA clusters ”) 

and when they are first morphed onto an in- 

duced template and then to the master tem- 

plate ( “test FA clusters ”). 
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c  

a  
he induced subjects targeting that specific induced template. We com-

uted the average distance between the reference atlas and each of the

uery atlases to be used as metric of morphism quality between each

air. Mathematically, the computed distances are elements of the Hauss-

orf distance ( Fig. 5 B): for each voxel assigned to a specific FreeSurfer

egion in the reference atlas, we computed the distance, d min , from that

oxel to the closest edge of its assigned homologous region in the query

tlas. This calculation was implemented using the fast Euclidean dis-

ance algorithm ( Mishchenko, 2015 ). The voxel-by-voxel distances d min 

re averaged over the template brain to produce the final morphism

uality measure. A smaller distance indicates better morphism quality. 

In a typical application of FreeSurfer, one is interested in accurate

egmentation of brain regions so that each voxel is assigned a proper,

natomically meaningful label. For the purposes of filtering, the accu-

acy and meaning of the label are irrelevant. Instead, a much simpler

equirement is in place: reliable delineation of homologous regions on

imilar brains according to some specific criteria without necessary cor-

espondence to a specific anatomical region. Once identified, boundaries

etween regions are used to assess morphism quality using the average

tlas distance. 

We computed the average atlas distance corresponding to all 9216

nduced-subject-to-induced-template morphisms generated in this study

nd found that the distance follows a bimodal distribution ( Fig. 6 ), with

 larger peak at about 0.11 mm and a smaller peak at approximately

.18 mm, separated by a trough at around 0.15 mm. Based on the trough

n this distribution, we classified morphisms as “superior ” or “inferior ”:

superior ” morphisms have average atlas distance less than 0.14 mm and

inferior ” morphisms have average atlas distance greater than 0.15 mm.

hose with distances between 0.14 and 0.15 mm were not studied fur-

her. We use “superior ” and “inferior ” to refer to the quality of individual

orphisms and reserve the adjectives “good ” and “bad ” to describe tem-

lates based on how well cluster analyses over them match the ground

ruth. 

.5. Subject and template subselection for cluster analysis 

Overall, the distribution of morphism quality is highly subject-

emplate-pair dependent: some induced subjects have superior mor-

hisms to most induced templates, while for others inferior morphisms

re predominant ( Fig. 7 A). To achieve the goal of the study and to

emonstrate reduction of sensitivity to the choice of template when only

uperior morphisms are retained, we algorithmically searched atlas dis-

ance results for a subset of induced subjects with an equal number of

uperior and inferior morphisms to a subset of induced templates. We

ound 30 induced subjects with superior morphisms to a subset of 25
5 
nduced templates and inferior morphisms to another 25 induced tem-

lates ( Fig. 7 B). Consequently, we refer to the first group of 25 induced

emplates as superior templates and the second 25 as inferior templates.

e then show that superior templates are in fact “good ” templates and

nferior templates are in fact “bad ” templates based on the match of the

A cluster analyses of the 30 subjects over them to the ground truth. The

egree to which FA clusters match the ground truth can be directly at-

ributed to the quality of the morphisms and to the templates themselves

ince the 30 induced subjects are held constant and because there is no

andomness in the analysis. For this demonstration, all other induced

ubjects and templates were discarded. 

.6. Comparison to the ground truth 

The overall goal of the present study was to examine the dependence

f the locations of voxel clusters where FA was statistically significantly

ssociated with age (FA clusters) on the choice of template for voxel-

ise analysis. To that end, we defined ground-truth, “gold standard ”

A clusters for the purposes of comparison. These were obtained by

pplying the exactly-known induced-subject-to-master-template mor-

hism ( Fig. 4 ) to the 30 induced subjects’ FA maps and performing

oxel-wise FA versus age analysis as described above. We denote the

et of “gold standard ” clusters as X G . 

To evaluate the effect of registration errors introduced by specific

emplate choices, we applied the error-containing induced-subject-to-

nduced-template morphisms to the 30 induced subjects’ FA maps; we

ubsequently applied the exactly-known morphism from the correspond-

ng induced template to the master template ( Fig. 8 A). For each in-

uced template, this procedure results in FA clusters, denoted X C , that

ave been mapped onto the master template while being influenced by

he error-containing induced-subject-to-induced-template morphisms.

o evaluate how well X C matches the “gold standard ” clusters X G , we

omputed Dice coefficient D of their overlap ( Dice, 1945 ): 

 = 

2 ||𝑋 𝐺 ∩𝑋 𝐶 
|
|

|
|𝑋 𝐺 

|
| + 

|
|𝑋 𝐶 

|
|

he Dice coefficient ranges between 0 and 1, where 0 corresponds to

isjoint sets and 1 corresponds to identical sets. Interpretation of values

n between is context dependent; even values that appear low may still

ndicate substantial overlap. 

. Results 

The proposition examined in this work was that inter-atlas distance

haracterization of subject-to-template registration errors predicts suit-

bility of a candidate template for voxel-wise FA analysis. Furthermore,
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Fig. 5. Characterization of registration error by average atlas distance. A) Atlas distance computation is shown for a single morphism between an induced subject 

and an induced template. The attempted registration of the induced subject to the induced template (dashed red arrow) in fact produces an image that resembles 

the induced template but has some degree of error (solid red arrow). This induced-subject-on-induced-template image and the induced template then have atlases 

computed by FreeSurfer, respectively generating query and reference atlases. The “distance ” between atlases is then computed by a Haussdorf-like method. B) 

Conceptual illustration of Haussdorf-like method for average inter-atlas distance calculation. The reference atlas (black oval) corresponds to the FreeSurfer-generated 

atlas of the induced template, while the query atlas (red oval) corresponds to the FreeSurfer-generated atlas of the induced-subject-on-induced-template image; the 

query atlas has been shifted and rotated during the error-prone morphing process. The closest-edge distance d min (solid double-headed arrows) from each point in the 

reference atlas to the query atlas is computed for all voxels in the reference atlas. The d min are averaged over all voxels to compute the final quality measure. Using 

the closest-edge distance underestimates the “true ” atlas distance ( d true ; dashed double-headed arrows) that would be obtained by computing distances between the 

voxels in the reference atlas to those exactly corresponding to them in the query atlas. Note that the true voxel to corresponding voxel distance cannot be assessed: 

if it could, it would be included in the morphism in the first place. 
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sage of a suitable template makes the outcomes of voxel-wise analysis

ore robust to template choice. To support this hypothesis, we com-

ared the FA versus age clusters produced by exact morphisms over the

aster template, which we denoted as “gold standard ”, to those first

orphed to the “superior ” and “inferior ” induced templates and sub-

equently mapped exactly to the master template ( Fig. 8 A). Our results

how that using the “superior ” templates results in an average Dice coef-

cient of approximately 0.56 (range 0.50 – 0.61), while using “inferior ”

emplates results in an average Dice coefficient of approximately 0.42

range 0.37 – 0.48) ( Fig. 8 B). 

To get a sense of the physical meaning of these values of the Dice

oefficient, which may appear “low ” even for “superior ” templates, we
6 
erformed a total of twelve single-voxel (1 mm) shifts (along each pos-

tive and negative x, y, and z direction, and along each positive and

egative xz, yz, and xy plane diagonals) on the gold standard FA clus-

ers and calculated the Dice coefficient representing the overlap of these

hifted clusters with the unshifted gold standard clusters ( Fig. 8 B). These

alues range from approximately 0.55 to 0.73, suggesting that the use

f “superior ” morphisms results in good FA clusters that very closely

atch the gold standard, up to a margin of error equivalent to a single

iagonal 1 mm voxel shift. On the other hand, the usage of “inferior ”

orphisms corresponds to a greater degree of error. It is also important

o note that their Dice coefficient range is similarly narrow to that of

he “good ” clusters. This indicates that the atlas-based morphism qual-
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Fig. 6. Morphism quality is bimodally distributed. Shown is the distribution of 

average atlas distance for all 9216 morphisms corresponding to the induced 

subject – induced template pairs generated in the present study. The average 

atlas distance is computed between atlases of the induced template and the 

induced-subject-on-induced-template ( Fig. 5 ). Based on this bimodal distribu- 

tion, we defined morphisms as “superior ” if they had an average atlas distance 

of less than 0.14 mm, and as “inferior ” if they had an average atlas distance 

greater than 0.15 mm. The relatively small set of morphisms with in-between 

average atlas distances was not evaluated further. 
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ty filter lessens the influence of template choice on voxel-wise analysis:

f morphisms are filtered to be “superior ” for a particular set of subjects,

hen one can expect similar results no matter what specific template is

hosen. The converse also holds: morphisms that fail the quality filter

ill lead to “robustly bad ” results. 
ig. 7. Morphism quality is subject-template-pair dependent. A) The subject-template de

ombinations generated in this study. The horizontal axes on the plots list the IDs of

xis lists the inductor IDs corresponding to the induced templates, with positive (blu

nd “inferior ” morphisms from the subjects listed on the horizontal axis. This plot d

ubject IDs display mostly blue template IDs, and others display mostly red. B) Outpu

o a first subset of 25 induced templates and inferior morphisms to a second subset o

he first 25 templates are called “superior templates ” and the second 25 are called “i

cross all 30 subjects. 

7 
. Discussion 

The premise for the present investigation was that registra-

ion/morph errors affect the conclusions of voxel-wise template-based

nalyses in a template-specific manner ( Fig. 1 ). In order to systemati-

ally examine how morphism errors vary with template choice, we per-

ormed voxel-wise FA analysis on a group of subjects in two ways: by

orphing to superior and inferior templates ( Fig. 7 ). FA clusters iden-

ified in the analyses over the superior templates matched the ground

ruth ( Fig. 8 ). Clusters over the inferior templates did not, illustrating

nd confirming the sensitivity of voxel-wise analysis to the choice of

emplate despite the same subject data set being used throughout. To

vercome both main difficulties on the way to studying and addressing

he influence of template choice on the results of voxel-wise analyses

the absence of “ground truth ” answers and the comparison of results

btained over different templates), we developed and followed an induc-

ion process to generate induced subjects and induced templates ( Fig. 3 ,

ig. 4 ). To identify superior and inferior templates, we developed a mor-

hism quality filter based on inter-atlas distance ( Fig. 5 ). 

.1. Advantages and interpretation of the inter-atlas distance 

We implemented an inter-atlas “distance ” averaged over brain re-

ions to quantify the degree of registration error between induced tem-

lates and induced subjects morphed onto them ( Fig. 5 ); each unique

orphism was therefore associated with a specific average atlas dis-

ance. We used distance rather than the Dice or Jaccard indexes fre-

uently used to compare atlases ( Klein et al., 2009 ; Avants et al., 2011 ;

abuncu et al., 2009 ) because length is a natural metric for morphism

rror quantification and has been found to be more sensitive at detecting

ifferences in performance ( Avants et al., 2011 ). 

The bimodal distribution of the atlas distances we observed ( Fig. 6 )

rovides a convenient approach to dichotomizing quality of morphisms.

t implies that pairs of brains can be characterized as either morphable

o each other or not, and that as a result, a yes/no answer can be given

o questions of template suitability for the comparison of a particular

et of subjects. In other words, the average atlas distance can be used
pendence of morphism quality is shown for all induced subjects and templates 

 the 96 induced subjects, using original numbering from the ELS. The vertical 

e points) and negative (red points) numbers respectively indicating “superior ”

emonstrates the subject-template-pair dependence of morphism quality: some 

t of algorithmic selection of 30 specific subjects that have superior morphisms 

f 25 induced templates for FA cluster comparison. Consequent to this selection, 

nferior templates ”. The sets of “superior ” and “inferior ” templates are identical 
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Fig. 8. Evaluation of morphism quality filter. A) Overall schematic of morphism quality filter evaluation. The chosen 30 induced subjects ( Fig. 7 B) have their FA maps 

morphed directly onto the master template; their voxel-wise analysis produces “gold standard ” FA clusters X G that represent a ground truth (left arrow). To evaluate 

the effect of morphism quality on FA cluster location, the same 30 FA maps were morphed onto the induced templates that were classified ( Fig. 7 B) as superior or 

inferior (red arrow); results of voxel-wise analyses over them are subsequently morphed onto the master template, producing test FA clusters X C (right black arrow). 

The “gold standard ” clusters are compared to the test FA clusters over the 25 superior and 25 inferior templates using the Dice coefficient. Shown at the bottom 

of the figure are examples of “gold standard ” (green) and test (blue) FA clusters projected onto the master template. The specific example shown demonstrates 

agreement between a test and gold standard FA cluster anterior to the right ventricle, but also the presence of a false positive cluster in the right cerebral hemisphere 

(yellow arrow). B) Dice index D (colored contour map) representing the spatial overlap between “gold standard ” FA clusters X G and three types of test FA clusters 

of interest X C : the 25 superior (green points), the 25 inferior (black points), and a set of 12 “control ” clusters (white points). The 12 control clusters were obtained 

by perturbing the “gold standard ” clusters by single-voxel shifts in each of the x, y, and z orthogonal directions as well as in the diagonal directions. Calculation of 

the Dice coefficient in three-dimensional space can lead to values much less than 1 while still indicating close overlap. This is exemplified by the overlap between 

the green and white points, which suggests that superior morphisms produce good clusters that in fact closely agree with the gold standard ones. 
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A  
o classify morphisms between a subject and a template – and thus the

emplate itself – as “superior ” or “inferior ”. Although the shape of the

istribution suggests that most morphisms in this study are “superior ”,

his may be due to a limitation of the way our data set was constructed:

ince the induced subjects and induced templates are derived from the

ame original template (the JHU brain), they may have more anatomical

imilarities than in an actual study. The underlying reasons as to why

 specific template turned out to be “superior ” or “inferior ” are beyond

he scope of the present work. Morphism quality will vary due to any

ombination of factors related to the specific subject-template pair be-

ng compared as well as the specific morphism algorithm. Nonetheless,

he fact that there are still morph errors between induced subjects and

nduced templates is what allows our study design to examine morphism

uality. In the absence of morph errors, induced templates would exactly

atch inductors and induced subjects would exactly match the master

emplate and there would be nothing to study. Thus, we both exploit the

resence of morph errors and work around them in a controlled fashion.

Additional considerations in our study design relate to interpreting

he numerical value of the inter-atlas distance. Dichotomization of any

istribution is always possible, even if it is not bimodal. Therefore, the

superior ”/ ”inferior ” atlas distance cutoff point may need to be opti-

ized on the basis of individual templates. In addition, the use of al-
8 
ernative registration algorithms may change the morphism error distri-

ution: a subject-template pair with a “superior ” morphism constructed

y one registration algorithm may be “inferior ” when constructed by

nother and vice versa. This may alter the optimal cutoff for an overall

ataset as well. Finally, the exact segmentation procedure used to gener-

te the atlases may affect the optimal cutoff. To illustrate, we computed

he ASEG atlas for the JHU brain using FreeSurfer version 6.0 and cal-

ulated its distance to the atlas computed with version 5.3, and found a

istance of 0.10 mm from one to the other. The amount of empty space

ropped around brain images also affects segmentation with FreeSurfer.

hus, the specific value of 0.14 mm as a cutoff point is consistent with

he level of segmentation variability of FreeSurfer and might have to be

djusted to the specific segmentation tool employed. 

Our inter-atlas distance metric of morphism quality relies on robust

rain segmentation. The simplest and most crude automatic segmenta-

ion into gray matter, white matter and CSF is the most robust but of

ittle value because misalignments within their boundaries remain un-

etected. At the other extreme, fine-grained segmentation, for example

y the WMPARC module of FreeSurfer or some other tool, may not be

ufficiently reliable and require manual interventions, which would be

mpractical in our and many other large studies. We, therefore, chose the

SEG module of FreeSurfer as one in between: not too crude and reli-
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ble for brains in the age range of our study. It is perhaps possible to join

ome small regions of a fine segmentation such as WMPARC into larger

nes to create reliable segmentation finer than ASEG allowing more sen-

itive morphism quality metric than we described. Undoubtedly, an op-

imal algorithm for assessing morphism quality exists; a search for it is

eft for future work. 

Even though we chose the JHU brain as the master template, there

s nothing intrinsically special about this choice. Had we selected some

ther brain, the gold standard clusters would be different because they

re influenced by morphism errors. Nevertheless, the main points of

ur study would remain: FA clusters are sensitive to the choice of tem-

late and that this sensitivity is reduced with the help of morph quality

ltering. 

.2. Limitations and potential biases 

Practical limitations of our atlas-distance-based morphism quality

lter include high computational cost and the decrease in sample size

f quality-filtered datasets. In practice, our approach would require the

alculation of atlases for the subjects of interest and the candidate tem-

lates the subjects will be registered to. Calculations of atlases over

ntire datasets are computationally very expensive, although this is-

ue may be mitigated by the relatively limited amount of candidate

emplates generally considered in neuroimaging. In addition, the fil-

ering process can substantially decrease sample size and make statis-

ical analyses of voxel-wise differences more difficult to justify. This is

 necessary trade-off to be able to report reliable, robust results: for

xample, even if the “best ” template is chosen in a traditional (subjec-

ive) manner for a particular set of subjects, there may still be unac-

eptably large subject-to-template registration errors present, meaning

hat any reported results would not be scientifically valid. Our approach

ould allow datasets to be “cleaned up ” such that any voxel-wise anal-

sis would be valid and reproducible: the specific choice of subjects and

emplates would not matter if the registrations between them pass the

uality filter. 

Filtering data based on morphism quality as proposed here can po-

entially lead to selection bias just as filtering based on any other crite-

ion might. However, if selection bias is created by our approach, it only

eveals specific features of the dataset and/or analysis itself: any pres-

nce of selection bias suggests that morphism quality depends on some

etric in the study. This dependence diminishes the reliability of the

esults in the absence of morphism quality filtering more severely than

n its presence. For example, in general older brains do not morph well

nto young brains and vice versa ( Fleysher et al., 2017 ). Therefore, re-

ults of a voxel-wise analysis of a set of older brains that employs a young

rain template without morphism quality filtering would be largely in-

ccurate because of the influence of morph errors. Application of the

roposed morphism quality filtering could reveal inappropriateness of

he choice of the template. 

Inadvertent selection bias might be caused by the filter itself if seg-

entation is tuned to specific features of the image causing false rejec-

ion of good morphisms or false acceptance of bad ones. Using the same

xample, if FreeSurfer provides more reliable segmentation of young

rains compared to old brains, then a good morphism between young

nd old brains might be rejected due to erroneous segmentation of the

ld brains. It is therefore important to verify that a segmentation tool is

ppropriate to the images at hand. In our study, all brain images are from

ealthy young to middle-aged subjects that have no brain pathology or

tructural abnormalities. At the same time, filtering depends on reliable

elineation of homologous regions on similar brains according to some

pecific criteria and does not depend on the accuracy of their assign-

ent to anatomical labels. Therefore, mischaracterization of morphism

uality is unlikely. Even if mischaracterization was present, it was not

trong enough to erase the beneficial effects of filtering as demonstrated

y the marked improvement in the Dice coefficient of the match to the

round truth. In addition, filtering based on a more robust segmenta-
9 
ion would lead to even better than reported match between analyses

ver superior templates and the ground truth. Similarly, the match to

he ground truth would become worse than reported for analyses over

he inferior templates. 

.3. Future studies and conclusions 

An expected benefit of voxel-wise analyses on larger datasets is the

averaging out ” of morph errors across subjects that can increase the

ower of voxel-wise statistical tests. In our study, we see that for er-

ors corresponding to an average atlas distance exceeding 0.15 mm and

 sample size of 30, this averaging out does not yet occur, as the FA

lusters for the “inferior ” induced templates are significantly displaced

rom the gold standard clusters ( Fig. 8 B). The stochastic reduction of

rrors will scale with the inverse of the square root of the sample size:

or example, to halve the magnitude of observed errors one would need

o quadruple the sample size. Therefore, the total number of scans re-

uired to achieve such an improvement would also quadruple, which

ay be inconvenient, expensive, or impossible for some studies. In an

ctual study, a “supreme ” template could be identified among all can-

idate templates as the one with the largest number of subjects passing

 morphism quality threshold. In addition, instead of focusing on sam-

le size, future studies could incorporate the morphism quality measure

nto their statistical workflow in place of voxel-wise statistical tests. The

ubject and template induction process described herein could be used

o verify that new statistical approaches are indeed robust to the choice

f template. Similarly, existing statistical approaches can be evaluated

or their robustness (or lack thereof) to template choice. 

The morphism quality measure presented in this work could be used

o indicate the suitability of templates for any voxel-wise analysis fo-

used on a specific set of subjects. Although this work was carried out

n the context of FA cluster analysis based on deformation of images to

 common template, the quality measure could be useful for other types

f voxel-wise studies, such as functional MRI or voxel- and tensor-based

orphometry ( Thompson et al., 2000 a; Ashburner and Friston, 2000 ).

verall, this work addresses an important gap in knowledge, since tem-

late choice is an unresolved problem that is seldom addressed in con-

emporary voxel-wise studies. Indeed, prior work has suggested that

onclusions of voxel-wise analyses may need to be revisited to ensure

ppropriateness of their choice of template ( Suri et al., 2015 ; Crum et al.,

003 ; Keihaninejad et al., 2012 ). The present work suggests a method

apable of exploring this problem and ensuring that reported results are

obust to template choice and scientifically valid. 

eclaration of Competing Interest 

None. 

redit authorship contribution statement 

Nelson Gil: Conceptualization, Methodology, Investigation, Soft-

are, Visualization, Writing - original draft. Michael L. Lipton:

onceptualization, Supervision, Writing - review & editing. Roman

leysher: Conceptualization, Methodology, Investigation, Supervision,

isualization, Writing - review & editing. 

cknowledgments 

This work was supported by the National Institute of Aging grant

01AG003949 and National Institute of Neurologic Disorders and Stroke

rant R01NS082432 . NG was supported by the National Research Ser-

ice Award (NRSA) individual fellowship F31GM116570 and the Med-

cal Scientist Training Program (MSTP) grant T32GM007288. 

https://doi.org/10.13039/100000065


N. Gil, M.L. Lipton and R. Fleysher NeuroImage 227 (2021) 117657 

R

A  

 

A  

 

A  

A  

A  

 

C  

C  

D  

 

D  

D  

D  

 

E  

 

F

F  

 

F  

 

F  

 

G  

G  

 

H  

 

H  

 

H  

 

H  

 

H  

 

J  

J  

K  

 

K  

 

 

K  

 

K  

 

K  

 

K  

 

L  

 

M  

 

 

M  

 

M  

 

M  

M  

 

O  

P  

 

P  

 

R  

 

S  

 

S  

S  

T  

T  

 

T  

 

V  

 

 

W  

 

eferences 

cheson, A. , Wijtenburg, S.A. , Rowland, L.M. , Winkler, A. , Mathias, C.W. , Hong, L.E. ,

et al. , 2017. Reproducibility of tract-based white matter microstructural measures

using the ENIGMA-DTI protocol. Brain Behav. 7, e00615 . 

rdekani, B.A. , Guckemus, S. , Bachman, A. , Hoptman, M.J. , Wojtaszek, M. , Nierenberg, J. ,

2005. Quantitative comparison of algorithms for inter-subject registration of 3D vol-

umetric brain MRI scans. J. Neurosci. Methods 142, 67–76 . 

shburner, J. , Friston, K.J. , 2000. Voxel-based morphometry–the methods. Neuroimage

11, 805–821 . 

ubert-Broche, B. , Evans, A.C. , Collins, L. , 2006. A new improved version of the realistic

digital brain phantom. Neuroimage 32, 138–145 . 

vants, B.B. , Tustison, N.J. , Song, G. , Cook, P.A. , Klein, A. , Gee, J.C. , 2011. A reproducible

evaluation of ANTs similarity metric performance in brain image registration. Neu-

roimage 54, 2033–2044 . 

rum, W.R. , Griffin, L.D. , Hill, D.L. , Hawkes, D.J. , 2003. Zen and the art of medical image

registration: correspondence, homology, and quality. Neuroimage 20, 1425–1437 . 

rum, W.R. , Hartkens, T. , Hill, D.L. , 2004. Non-rigid image registration: theory and prac-

tice. Br. J. Radiol. 77 (Spec No 2), S140–S153 . 

atteri, R.D. , Liu, Y. , D’Haese, P.F. , Dawant, B.M. , 2015. Validation of a nonrigid reg-

istration error detection algorithm using clinical MRI brain data. IEEE Trans. Med.

Imaging 34, 86–96 . 

espotovic, I. , Goossens, B. , Philips, W. , 2015. MRI segmentation of the human brain:

challenges, methods, and applications. Comput. Math. Methods Med. 2015, 450341 . 

ice, L.R. , 1945. Measures of the amount of ecologic association between species. Ecology

26, 297–302 . 

ouaud, G. , Jbabdi, S. , Behrens, T.E. , Menke, R.A. , Gass, A. , Monsch, A.U. , et al. , 2011. DTI

measures in crossing-fibre areas: increased diffusion anisotropy reveals early white

matter alteration in MCI and mild Alzheimer’s disease. Neuroimage 55, 880–890 . 

lhawary, H. , Oguro, S. , Tuncali, K. , Morrison, P.R. , Tatli, S. , Shyn, P.B. , et al. , 2010. Mul-

timodality non-rigid image registration for planning, targeting and monitoring during

CT-guided percutaneous liver tumor cryoablation. Acad. Radiol. 17, 1334–1344 . 

ischl, B. , 2012. FreeSurfer. Neuroimage 62, 774–781 . 

leysher, R. , Kim, N. , Suri, A. , Lipton, M. , Branch, C. , 2017. Characterization of registration

errors to screen aberrant subject results prior to voxel-wise whole brain analysis. In:

Proceedings of the 25th ISMRM, p. 4684 . 

leysher, R. , Lipton, M.L. , Noskin, O. , Rundek, T. , Lipton, R. , Derby, C.A. , 2018. White

matter structural integrity and transcranial Doppler blood flow pulsatility in normal

aging. Magn. Reson. Imaging 47, 97–102 . 

riston, K.J. , Worsley, K.J. , Frackowiak, R.S. , Mazziotta, J.C. , Evans, A.C. , 1994. Assessing

the significance of focal activations using their spatial extent. Hum. Brain Mapp. 1,

210–220 . 

arlapati, R.R. , Mostayed, A. , Joldes, G.R. , Wittek, A. , Doyle, B. , Miller, K. , 2015. Towards

measuring neuroimage misalignment. Comput. Biol. Med. 64, 12–23 . 

rachev, I.D. , Berdichevsky, D. , Rauch, S.L. , Heckers, S. , Kennedy, D.N. , Caviness, V.S. ,

et al. , 1999. A method for assessing the accuracy of intersubject registration of the

human brain using anatomic landmarks. Neuroimage 9, 250–268 . 

an, X. , Yang, X. , Aylward, S. , Kwitt, R. , Niethammer, M. , 2017. Efficient registration

of pathological images: a joint Pca/image-reconstruction approach. Proc. IEEE Int.

Symp. Biomed. Imaging 2017, 10–14 . 

offmann, C. , Krause, S. , Stoiber, E.M. , Mohr, A. , Rieken, S. , Schramm, O. , et al. , 2014.

Accuracy quantification of a deformable image registration tool applied in a clinical

setting. J. Appl. Clin. Med. Phys. 15, 4564 . 

optman, M.J. , Nierenberg, J. , Bertisch, H.C. , Catalano, D. , Ardekani, B.A. , Branch, C.A. ,

et al. , 2008. A DTI study of white matter microstructure in individuals at high genetic

risk for schizophrenia. Schizophr. Res. 106, 115–124 . 

ua, K. , Zhang, J. , Wakana, S. , Jiang, H. , Li, X. , Reich, D.S. , et al. , 2008a. Tract proba-

bility maps in stereotaxic spaces: analyses of white matter anatomy and tract-specific

quantification. Neuroimage 39, 336–347 . 

ua, X. , Leow, A.D. , Parikshak, N. , Lee, S. , Chiang, M.C. , Toga, A.W. , et al. , 2008b. Ten-

sor-based morphometry as a neuroimaging biomarker for Alzheimer’s disease: an MRI

study of 676 AD, MCI, and normal subjects. Neuroimage 43, 458–469 . 

enkinson, M. , Beckmann, C.F. , Behrens, T.E. , Woolrich, M.W. , Smith, S.M. , 2012. Fsl.

Neuroimage. 62, 782–790 . 

oshi, S. , Davis, B. , Jomier, M. , Gerig, G. , 2004. Unbiased diffeomorphic atlas construction

for computational anatomy. Neuroimage 23 (Suppl 1), S151–S160 . 

earney, V. , Haaf, S. , Sudhyadhom, A. , Valdes, G. , Solberg, T.D. , 2018. An unsuper-

vised convolutional neural network-based algorithm for deformable image registra-

tion. Phys. Med. Biol. 63, 185017 . 
10 
eihaninejad, S. , Ryan, N.S. , Malone, I.B. , Modat, M. , Cash, D. , Ridgway, G.R. , et al. ,

2012. The importance of group-wise registration in tract based spatial statistics study

of neurodegeneration: a simulation study in Alzheimer’s disease. PLoS One 7, e45996 .

innunen, K.M. , Greenwood, R. , Powell, J.H. , Leech, R. , Hawkins, P.C. , Bonnelle, V. , et al. ,

2011. White matter damage and cognitive impairment after traumatic brain injury.

Brain 134, 449–463 . 

lein, A. , Andersson, J. , Ardekani, B.A. , Ashburner, J. , Avants, B. , Chiang, M.C. , et al. ,

2009. Evaluation of 14 nonlinear deformation algorithms applied to human brain

MRI registration. Neuroimage 46, 786–802 . 

ochunov, P. , Lancaster, J. , Thompson, P. , Toga, A.W. , Brewer, P. , Hardies, J. , et al. , 2002.

An optimized individual target brain in the Talairach coordinate system. Neuroimage

17, 922–927 . 

ochunov, P. , Williamson, D.E. , Lancaster, J. , Fox, P. , Cornell, J. , Blangero, J. , et al. , 2012.

Fractional anisotropy of water diffusion in cerebral white matter across the lifespan.

Neurobiol. Aging 33, 9–20 . 

yu, I. , Kim, S.H. , Seong, J.K. , Yoo, S.W. , Evans, A. , Shi, Y. , et al. , 2015. Robust estimation

of group-wise cortical correspondence with an application to macaque and human

neuroimaging studies. Front. Neurosci. 9, 210 . 

ascott, C.R. , Sol, J.C. , Bousquet, P. , Lagarrigue, J. , Lazorthes, Y. , 2006. Lauwers-Cances

V. Quantification of true in vivo (application) accuracy in cranial image-guided

surgery: influence of mode of patient registration. Neurosurgery 59, ONS146–ONS156

discussion ONS-56 . 

ayer, A.R. , Dodd, A.B. , Ling, J.M. , Wertz, C.J. , Shaff, N.A. , Bedrick, E.J. , et al. , 2018. An

evaluation of Z-transform algorithms for identifying subject-specific abnormalities in

neuroimaging data. Brain Imaging Behav. 12, 437–448 . 

ishchenko, Y. , 2015. A fast algorithm for computation of discrete Euclidean distance

transform in three or more dimensions on vector processing architectures. Signal Im-

age Video Process. 9, 19–27 . 

ori, S. , Oishi, K. , Faria, A.V. , 2009. White matter atlases based on diffusion tensor imag-

ing. Curr. Opin. Neurol. 22, 362–369 . 

uenzing, S.E. , van Ginneken, B. , Murphy, K. , Pluim, J.P. , 2012. Supervised quality assess-

ment of medical image registration: application to intra-patient CT lung registration.

Med. Image Anal. 16, 1521–1531 . 

liveira, F.P. , Tavares, J.M. , 2014. MediCAL IMAGE REGISTRATION: A REVIew. Comput.

Methods Biomech. Biomed. Eng. 17, 73–93 . 

fefferbaum, A. , Sullivan, E.V. , Hedehus, M. , Lim, K.O. , Adalsteinsson, E. , Moseley, M. ,

2000. Age-related decline in brain white matter anisotropy measured with spatially

corrected echo-planar diffusion tensor imaging. Magn. Reson. Med. 44, 259–268 . 

fefferbaum, A. , Sullivan, E.V. , 2003. Increased brain white matter diffusivity in normal

adult aging: relationship to anisotropy and partial voluming. Magn. Reson. Med. 49,

953–961 . 

isholm, P. , Janoos, F. , Norton, I. , Golby, A.J. , Wells 3rd., W.M. , 2013. Bayesian charac-

terization of uncertainty in intra-subject non-rigid registration. Med. Image Anal. 17,

538–555 . 

abuncu, M.R. , Yeo, B.T. , Van Leemput, K. , Vercauteren, T. , Golland, P. , 2009. Asym-

metric image-template registration. Med. Image Comput. Comput. Assist. Interv. 12,

565–573 . 

otiras, A. , Davatzikos, C. , Paragios, N. , 2013. Deformable medical image registration: a

survey. IEEE Trans. Med. Imaging 32, 1153–1190 . 

uri, A.K. , Fleysher, R. , Lipton, M.L. , 2015. Subject based registration for individualized

analysis of diffusion tensor MRI. PLoS One 10, e0142288 . 

hompson, P. , Toga, A.W. , 2002. A framework for computational anatomy. Comput. Vis.

Sci. 5, 13–34 . 

hompson, P.M. , Giedd, J.N. , Woods, R.P. , MacDonald, D. , Evans, A.C. , Toga, A.W. , 2000a.

Growth patterns in the developing brain detected by using continuum mechanical

tensor maps. Nature 404, 190–193 . 

hompson, P.M. , Woods, R.P. , Mega, M.S. , Toga, A.W. , 2000b. Mathemati-

cal/computational challenges in creating deformable and probabilistic atlases

of the human brain. Hum. Brain Mapp. 9, 81–92 . 

iviani, R. , Beschoner, P. , Jaeckle, T. , Hipp, P. , Kassubek, J. , Schmitz, B. , 2007. The boot-

strap and cross-validation in neuroimaging applications: estimation of the distribution

of extrema of random fields for single volume tests, with an application to ADC maps.

Hum. Brain Mapp. 28, 1075–1088 . 

u, G. , Peng, X. , Ying, S. , Wang, Q. , Yap, P.T. , Shen, D. , et al. , 2016. eHUGS: enhanced

hierarchical unbiased graph shrinkage for efficient groupwise registration. PLoS One

11, e0146870 . 

http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0001
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0001
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0001
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0001
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0001
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0001
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0001
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0001
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0002
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0002
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0002
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0002
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0002
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0002
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0002
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0003
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0003
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0003
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0004
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0004
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0004
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0004
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0005
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0005
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0005
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0005
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0005
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0005
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0005
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0006
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0006
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0006
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0006
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0006
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0007
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0007
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0007
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0007
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0008
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0008
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0008
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0008
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0008
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0009
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0009
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0009
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0009
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0010
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0010
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0011
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0011
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0011
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0011
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0011
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0011
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0011
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0011
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0012
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0012
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0012
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0012
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0012
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0012
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0012
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0012
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0013
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0013
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0014
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0014
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0014
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0014
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0014
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0014
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0015
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0015
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0015
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0015
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0015
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0015
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0015
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0016
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0016
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0016
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0016
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0016
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0016
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0017
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0017
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0017
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0017
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0017
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0017
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0017
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0018
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0018
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0018
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0018
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0018
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0018
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0018
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0018
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0019
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0019
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0019
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0019
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0019
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0019
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0020
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0020
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0020
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0020
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0020
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0020
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0020
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0020
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0021
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0021
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0021
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0021
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0021
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0021
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0021
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0021
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0022
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0022
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0022
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0022
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0022
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0022
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0022
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0022
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0023
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0023
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0023
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0023
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0023
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0023
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0023
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0023
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0024
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0024
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0024
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0024
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0024
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0024
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0025
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0025
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0025
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0025
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0025
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0026
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0026
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0026
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0026
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0026
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0026
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0027
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0027
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0027
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0027
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0027
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0027
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0027
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0027
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0028
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0028
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0028
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0028
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0028
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0028
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0028
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0028
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0029
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0029
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0029
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0029
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0029
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0029
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0029
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0029
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0030
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0030
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0030
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0030
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0030
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0030
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0030
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0030
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0031
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0031
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0031
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0031
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0031
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0031
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0031
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0031
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0032
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0032
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0032
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0032
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0032
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0032
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0032
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0032
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0033
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0033
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0033
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0033
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0033
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0033
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0034
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0034
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0034
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0034
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0034
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0034
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0034
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0034
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0035
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0035
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0036
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0036
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0036
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0036
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0037
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0037
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0037
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0037
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0037
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0038
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0038
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0038
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0039
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0039
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0039
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0039
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0039
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0039
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0039
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0040
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0040
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0040
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0041
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0041
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0041
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0041
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0041
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0041
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0042
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0042
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0042
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0042
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0042
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0042
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0043
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0043
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0043
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0043
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0044
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0044
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0044
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0044
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0045
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0045
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0045
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0046
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0046
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0046
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0046
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0046
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0046
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0046
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0047
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0047
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0047
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0047
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0047
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0048
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0048
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0048
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0048
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0048
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0048
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0048
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0049
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0049
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0049
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0049
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0049
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0049
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0049
http://refhub.elsevier.com/S1053-8119(20)31142-3/sbref0049

	Registration quality filtering improves robustness of voxel-wise analyses to the choice of brain template
	1 Introduction
	2 Materials and methods
	2.1 Imaging protocol
	2.2 Registration framework
	2.3 Registration algorithm and statistical analysis
	2.4 Atlas-distance-based morphism quality measure
	2.5 Subject and template subselection for cluster analysis
	2.6 Comparison to the ground truth

	3 Results
	4 Discussion
	4.1 Advantages and interpretation of the inter-atlas distance
	4.2 Limitations and potential biases
	4.3 Future studies and conclusions

	Declaration of Competing Interest
	Credit authorship contribution statement
	Acknowledgments
	References


