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Diffusion tractography of axonal
degeneration following shear injury

A 22-year-old construction worker presented after falling from a
scaffold onto the vertex of his head. After suffering a brief loss
of consciousness in the field, the patient was alert and oriented
and without neurological deficits upon arrival to the Emergency
Room. CT of the head demonstrated two small haemorrhages
in the posterior aspect of the body of the corpus callosum,
consistent with shear injury (fig 1). The patient was observed
overnight and discharged the next day. Over the next several
years, the patient had persistent cognitive difficulties, including
memory loss and poor attentiveness, to the extent that he was
unable to continue working. Diffusion tensor imaging (DTI)
tractography performed 7 years after the original injury
demonstrated severe disruption of white matter fibre tracts
connecting the parietal lobes through the region of prior shear
injury in the corpus callosum (fig 2).

Diffuse axonal injury (DAI) is one of the most important
causes of cognitive disorders in patients with traumatic brain
injury (TBI). DAI results from damage to the white matter
caused by unequal rotation or deceleration/acceleration forces
acting at the interface of tissues that differ in density or
rigidity.1 These forces stretch and injure axons, causing oedema,
cytoskeletal derangement and axoplasmic leakage. Because DAI
lesions are caused by shear strain deformation, they are known
as shearing injuries. These lesions are typically located at the
grey–white matter interface or within white matter fibre tracts.

Cognitive and behavioural disorders are often severe problems
following DAI.2 These disorders may interfere with the ability
to function independently and with resumption of employ-
ment. An accurate evaluation of the extent of neural injury in
DAI patients is essential for treatment planning, for developing
a rehabilitation programme, and for providing appropriate
counselling to patients concerning their cognitive disorders.

Conventional neuroimaging underestimates the true extent
of DAI and inadequately localises axonal shearing within
specific white matter tracts for correlation with functional
deficits.3 DTI is a type of MRI that can characterise the
directionality of water diffusion in three-dimensional space.
Within coherently organised white matter tracts with parallel
fibre bundles, water diffuses more freely along the direction of
the white matter fibres than across the fibres. This phenom-
enon, known as anisotropic diffusion, can be quantified at each

Figure 1 Axial unenhanced CT image of the brain demonstrates two
small linear haemorrhages in the posterior aspect of the body of the
corpus callosum (arrows), consistent with shear injury.
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voxel using DTI. The direction of diffusion determined using
DTI is used to delineate the three-dimensional white matter
connectivity among regions of the brain, a form of non-invasive
in vivo tract tracing known as DTI fibre tractography.4 DTI is
reported to be useful in detecting white matter damage, which
is not evident on conventional T1- and T2-weighted MR
images.5 In this case, the dramatic loss of anisotropy in the
parietal white matter demonstrated by tractography is evidence
of axonal degeneration due to the initial corpus callosum shear
injury.
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Figure 2 Diffusion tensor tractography
in (A) superior and (B) lateral projections
demonstrates severe disruption of the
white matter fibre tracts extending from
the parietal lobes through the region of
prior shear injury in the corpus callosum.
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