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Abstract

Background—Magnetic resonance imaging reveals macro- and microstructural correlates of 

neurodegeneration, which are often assessed using voxel-by-voxel t-tests for comparing mean 

image intensities measured by fractional anisotropy (FA) between cases and controls or regression 

analysis for associating mean intensity with putative risk factors. This analytic strategy focusing 

on mean intensity in individual voxels, however, fails to account for change in distribution of 

image intensities due to disease.

New method—We propose a method that aims to facilitate simple and clear characterization of 

underlying distribution. Our method consists of two steps: subject-level (Step 1) and group-level 

or a specific risk-level density function estimation across subjects (Step 2).

Results—The proposed method was demonstrated with a simulated data set and real FA data sets 

from two white matter tracts, where the proposed method successfully detected any departure of 

the FA distribution from the normal state by disease: p< 0.001 for simulated data; p = 0.047 for the 

posterior limb of internal capsule; p = 0.06 for the posterior thalamic radiation.

Comparison with existing method(s)—The proposed method found significant disease 

effect (p< 0.001) while conventional 2-group t-test focused only on mean intensity did not (p = 

0.61) in a simulation study. While significant age effects were found for each white matter tract 
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from conventional linear model analysis with real FA data, the proposed method further confirmed 

that aging also triggers distribution-wide change.

Conclusion—Our proposed method is powerful for detection of risk factors associated with any 

type of microstructural neurodegenerations with brain imaging data.
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1. Introduction

Voxel-by-voxel t-test is the most common analytic approach used to compare images 

between two groups for assessment of the impact of neurodegenerative diseases on brain 

structure (Thiebaut de Schotten et al., 2011; Muller et al., 2009; Lipton et al., 2012; Kim et 

al., 2013). Voxel-wise analyses in general, however, are inherently based on a strong 

assumption that disease effects are homogenous across subjects. However, this homogeneity 

assumption is often violated as reported in many studies (Thiebaut de Schotten et al., 2011; 

Muller et al., 2009; Lipton et al., 2012; Kim et al., 2013; Kou et al., 2010; Rosenbaum and 

Lipton, 2012; Yan et al., 2013; Silverman, 2009; Kochunov et al., 2007; Walhovd et al., 

2005; Benson et al., 2007). White matter (WM) tissue in the brain is highly susceptible to 

aging and heterogeneous neurodegenerative disease pathology such as Alzheimer disease 

and traumatic brain injury (TBI) (Thiebaut de Schotten et al., 2011; Muller et al., 2009; 

Lipton et al., 2012; Kou et al., 2010; Rosenbaum and Lipton, 2012; Yan et al., 2013; 

Silverman, 2009). These neurodegenerative diseases cause WM axonal damage with 

consequent disruption of cerebral connectivity leading to cognitive dysfunction (Silverman, 

2009; Kochunov et al., 2007; Walhovd et al., 2005). WM microstructural damage can be 

assessed by measuring fractional anisotropy (FA) obtained from diffusion tensor imaging 

(DTI). WM axonal damage typically reduces the directional coherence of water diffusivity, 

manifesting as lower FA. However, the spatial variation of WM pathology among subjects is 

high (Thiebaut de Schotten et al., 2011; Muller et al., 2009; Lipton et al., 2012; Kim et al., 

2013), and thus voxel-by-voxel statistical analysis of FA images may not be appropriate in 

the assessment of neurodegenerative diseases.

A few studies have addressed such limitation of voxel-wise analysis by instead adopting a 

histogram approach to characterize and compare shapes of WM FA distributions between 

patients and healthy subjects (Benson et al., 2007; Lipton et al., 2008; Nave R et al., 2007). 

However, these comparisons have been limited to two-sample t-tests comparing patients’ 

and controls’ estimated moment summary statistics, such as mean, variance, skewness, and 

kurtosis of individual subjects’ histograms of brain-wide image distributions (Benson et al., 

2007). While this approach better accounts for spatial heterogeneity of disease pathology 

across subjects than voxel-by-voxel group comparison, it is not easy to summarize the four 

moments into a salient conclusion concerning group differences or their association with risk 

factors.

Kim et al. Page 2

J Neurosci Methods. Author manuscript; available in PMC 2017 November 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Statistical methods for characterization of distribution by putative risk factors have been 

studied in general data setting in which one or a few measurements per subject are observed, 

and published in R packages, GAMLSS, and GAMLSS-MX by Stasinopoulos and Rigby 

(2007). While GAMLSS-MX adopts nonparametric density function estimation based on 

mixture models, GAMLSS adopts parametric approach. To our knowledge, however, their 

methods have not been studied for application to brain imaging data whose structure is 

highly unique in terms of the number of measurements observed per subject. In what 

follows, a need for customizing GAMLSS or GAMLSS-MX method according to such a 

unique structure of brain imaging data is discussed.

In high-resolution images, the number of voxels in each segmented WM brain atlas well 

exceeds 103 and reaches 106 if the whole volume of the brain is of interest. Such a large 

number of measurements per subject provide opportunities for estimating subject-level 

density function while it tackles application of statistical methods developed in general 

settings. Given this order of magnitude in imaging data, we structure our proposed method 

in two steps: (1) subject-level density estimation and (2) group-level or specific risk-level 

density function. It is noteworthy that the GAMLSS or GAMLSS-MX method 

(Stasinopoulos and Rigby, 2007) has no separation of these two steps. We in this study 

prefer nonparametric density function estimation due to its flexible adaptation, and tailor the 

existing GAMLSS-MX to fit the brain imaging data. We utilize the Gaussian mixture model 

(GMM) approach for Step 1 because GMM can flexibly characterize unusual distributions as 

a mixture of multiple Gaussian distributions (Molas and Lesaffre, 2012) with mixing 

probabilities. We recently proposed a method (Kim et al., 2014) that differentiates 

compositions of mixing probabilities to latent Gaussian densities for subject-level density 

functions. This method indirectly estimates subject-specific mixing probabilities a posteriori 
based on a mixture of Gaussian densities estimated from that likelihood function of the 

pooled data. In the present study, we extend and enhance the indirect estimation approach to 

one that directly incorporates subject-level mixing probabilities into the likelihood function. 

We call this method “direct estimation” as opposed to the indirect estimation described 

previously. Once subject-level density functions are estimated at Step 1, we use a 

multinomial logistic regression model with subject-wise pseudo multinomial responses 

(Stasinopoulos and Rigby, 2007), generated using the GMM results in Step 1, to estimate 

density function at each risk level across subjects for Step 2. A diagram showing the flow of 

the proposed method is shown in Fig. 1. Finally, we characterize four moment statistics, 

mean, variance, skew, and kurtosis, by using mixing probabilities, each of which was 

estimated as a function of putative risk factors. These four moment statistics are typically 

adopted for describing a distribution. Let us call the method proposed here “distribution-
based disease trait detection method”.

We introduce the proposed method in Section 2. We demonstrate the proposed estimation 

method with a simulated data set in Section 3, where a linear model focused on mean FA 

fails to detect disease trait. Demonstration with real FA image data is followed in Section 4, 

where the effects of aging on FA in two WM tracts are examined. Finally, in Section 5, we 

discuss the proposed methods in terms of their strengths and weaknesses.
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2. Methods

2.1. Diffusion tensor image acquisition and preprocessing

Imaging was performed using a 3.0 T MRI scanner (Achieva; Philips Medical Systems, 

Best, The Netherlands) with an eight-channel head coil (Sense Head Coil; Philips Medical 

Systems). T1-weighted whole-head structural imaging was performed using sagittal three-

dimensional magnetization-prepared rapid acquisition gradient echo (MP-RAGE; TR/TE/TI 

= 9.9/4.6/1250 ms; field of view, 240 mm2; matrix, 240 × 240; and section thickness, 1 mm). 

T2-weighted whole-head imaging was performed using axial two-dimensional turbo spin-

echo (TR/TE = 4000/100 ms; field of view, 240 mm2; matrix, 384 × 512; and section 

thickness, 2 mm). DTI was performed using single-shot echo-planar imaging (TR/TE = 

11,000/51 ms; field of view, 240 mm2; matrix, 120 × 120; section thickness, 2 mm; 

independent diffusion sensitizing directions, 32; and b = 800s/mm2).

FA was derived from DTI at each voxel using the FMRIB Diffusion Toolbox (Smith et al., 

2007). Preprocessing procedures implemented for DTI included skull stripping, echo-planar 

imaging distortion correction, intermediate rigid-body registration, registration to standard 

space, transformation of DTI to standard space, and white matter segmentation, in sequence. 

Non-brain voxels were removed from the MP-RAGE and turbo spin-echo images using 

FMRIB-FSL software (Smith et al., 2004). Each brain volume was inspected section-by-

section, and residual non-brain voxels were removed manually. Turbo spin-echo images 

were acquired with the same section thickness, position and orientation as DTI. Distortion 

correction was accomplished using a nonlinear deformation algorithm to match each echo-

planar image to the corresponding turbo spin-echo volumes (Lim et al., 2006). For 

intermediate rigid-body registration, each subject’s turbo spin-echo images were registered 

to their three-dimensional MP-RAGE volume using the Automated Registration Toolbox 

(ART) (Ardekani, 1995) three-dimensional rigid-body approach (Ardekani et al., 2005). For 

registration to standard space, the nonlinear registration module in ART was used to register 

each subject’s three-dimensional MP-RAGE volume to a standard T1-weighted template, the 

Johns Hopkins University (JHU) T1 (JHU-MNI-SS-T1) (Holmes et al., 1998; Oishi et al., 

2009). For transformation of DTI to the standard space, distortion correction, intermediate 

rigid-body registration, and standard space registration were applied to the calculated FA 

maps in a single resectioning operation using ART. Final cubic voxel size was 1 mm3, 

masked to exclude non-brain voxels from the analysis. For white matter segmentation, the 

fast automated segmentation tool in the FMRIB-FSL package (Smith et al., 2004) was used 

to generate a white matter mask for the three-dimensional MP-RAGE template brain images 

and restrict subsequent statistical analysis of FA to white matter voxels. A JHU-MNI-SS 

atlas (JHU-MNI-SS-WMPM-Type-II) with comprehensive WM parcellation was used to 

extract WM anatomical information (Oishi et al., 2009).

2.2. A limitation in the current stream of FA image data analysis

We here discuss a limitation of current FA brain image data analysis. A typical statistical 

model for relating subject-wise mean intensity at each voxel with putative risk factors can be 

written as follows.
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(1)

where xiq is the q-th risk factor for the i-th subject, βq is the coefficient, and . In 

Model (1), the mean change of measurements (yi’s) by risk factor levels, which is 

, is of interest. Extension of such arguments can be similarly made with 

variance, skewness, and kurtosis, which are second, third, and fourth moment statistics from 

yi’s. Such models, associating higher moments (up to fourth order) statistics with putative 

risk factors, have been studied and proposed in the GAMLSS-MX, R package. While their 

methods have been applied to a general data structure which consists of one or a few 

measurements per subject, those have not been applied to brain imaging data. It is also 

known that implementing iterative algorithms, e.g. GAMLSS-MX, across individual voxels 

in the brain is highly exhaustive approach in terms of required memory space and computing 

time.

In neuroimaging studies, characterization of a region of interest (ROI) as a function of risk 

factors is more frequently applied in lieu of voxel-wise analysis to avoid repeating countless 

univariate analyses. We thus propose a method by modifying the GAMLSS-MX that enables 

estimating association between risk factors and higher order moment statistics from ROI-

based brain imaging data. It is noteworthy that a typical size of ROI is sometimes 

exceedingly large (>10000) and approaching to the size of the whole brain. As such, the 

proposed method is structured in two steps: (1) subject-level density estimation and (2) 

group-level or specific risk-level density function. Of note, the proposed method examines 

how FA distribution from each ROI changes by each risk factor level and enables researchers 

to answer such questions as “Does variance of the FA measurements in a ROI become 
smaller or larger in older ages?” and “Does mean of the FA measurements in a ROI become 
smaller in older ages?”

2.3. Proposed method

2.3.1. Voxel-wise normalization—We note that a distribution from pooling of all the 

voxels in a large scaled ROI can be highly irregular and complicated by presence of multi-

modes and/or highly skewed tails. A part of such complexity is due to heterogeneous mean 

and variance at each voxel across subjects. Such a complexity can cause longer iteration or 

failure of convergence, and necessitates a much larger number of Gaussian densities required 

for approximating to the true underlying density function with the Expectation-

Maximization (EM) algorithm which will be introduced in the following Section. To reduce 

complexity and enhance computation efficiency, we introduce a voxel-wise normalization 

step as below.
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(2)

where  is the mean intensity and s·j is the SD of subjects at j-th voxel. The efficacy of the 

normalization in Eq. (2) is demonstrated with simulated data in Section 3. We further discuss 

in Supplementary material 1 that the proposed normalization in Eq. (2) maintains two higher 

order (3rd and 4th) moment statistics after pooling which could be altered otherwise.

2.3.2. Step 1: estimation of subject-specific density functions—Our proposed 

direct estimation method incorporates specification of subject-level densities directly to the 

likelihood function through parameterization of subject-specific mixing probabilities. Unlike 

the previous indirect method (Kim et al., 2014), subject-specific mixing probabilities 

assigned to underlying Gaussian densities are estimated specifically for individual subjects 

while mean and variance for each latent Gaussian component are estimated from pooled data 

from all subjects. Differences in FA distribution between subjects are therefore characterized 

by differences in mixing probabilities assigned to underlying Gaussian densities. When 

compared to the direct method, the indirect method fails to fully specify likelihood function 

of FA data because it does not incorporate parameters necessary for specification of 

individual subject characteristics. It is also noteworthy that, although we can estimate 

subject-specific density functions by Kernel Density Estimation (KDE) (Gu, 2002), these 

approaches do not provide parameters for comparison between subjects as discussed in (Kim 

et al., 2014). Details of the results are shown in Supplementary material 2.

In contrast, for direct method, the subject-level mixing probability for the i-th subject is 

denoted by λi = (λi,1,…, λi,m) for m Gaussian densities φk (k = 1,…,m) with mean μk and a 

common variance σ2. We assume this equal variances σ2 of all m Gaussian densities since 

this assumption allows relatively easy interpretation of differences between density functions 

as detailed in (Kim et al., 2014). The entire configuration of the mixing probabilities of all n 
subjects is denoted by Λ = (λ1,…, λn). The sum of the mixing probabilities for each subject 

constrained to be 1, i.e.  for all i. This parameterization yields a Gaussian mixture 

for the i-th subject,

(3)

where θ = (μk, σ|k = 1,…, m) is common for all subjects. The likelihood function for all FA 

data from all subjects, based on (3), is expressed as follows:

(4)
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The number of parameters to be estimated in the Gaussian mixture (3) is dim (θ) + dim (⋀) 

= (n + 1) × (m − 1) + 2. To estimate every element of ⋀ and θ, we used the EM algorithm 

(Table 1) for the likelihood function in (4). Determination of optimal m is based on Akaike 

Information Criterion (AIC).

2.3.3. Step 2: estimation of density functions across subjects at risk factors—
Estimated subject-level mixing probabilities for m-Gaussian densities obtained from Step 1 

are then utilized for Step 2 between-subjects analysis which estimates a specific risk-level 

density function identified with mixing probabilities at the specific risk-level. In this step, 

each Gaussian density is treated as an individual class. A multinomial logistic regression 

model with pseudo multinomial responses adopted in GAMLSS-MX (Stasinopoulos and 

Rigby, 2007) was utilized, where each pseudo multinomial response (yik) for each subject is 

a class indicator to the k-th Gaussian density (i=1,…,n; k = 1,…,m). Each pseudo 

multinomial response generated for each subject is then weighted by subject-level mixing 

probabilities (λi,k) estimated from Model (1), where

We order the estimated Gaussian densities, denoted by Gk, by their means in ascending 

manner so that G1 and Gm represent the Gaussian densities with the lowest and the greatest 

means, respectively. Specifically, the multinomial log odds of the k-th density (k = 1,…,m) 

over the lowest Gaussian density (the reference) is given as below.

(5)

where x is a covariate vector of Q-risk factors and β1 = 0. The probability of a pseudo 

response (y) belonging to the k-th Gaussian density with a risk factor level (x) is denoted as 

pk(x)[= Pr(y = k|x)] and calculated as

(6)

Accordingly, the likelihood function from the multinomial logistic regression model with 

weights is given as below.

(7)
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Plugging in  estimated from (7) to (6) estimates pk(x) which is called mixing probability 

for the k-th Gaussian density at risk level x. Density function at risk level x can be written as

(8)

2.4. Four moment statistics as function of risk factors

We provide an additional procedure relating the results from Step 1 & 2, which characterizes 

density function at a specific risk-level x, to moment-based summary statistics, mean, 

variance, skew, kurtosis, which are conventionally adopted for characterizing density 

function. Specific calculation for mean (α), variance (ν2), skew (sk), and kurtosis (kr) at a 

risk level x with the density functions (φ1(z; μ1, σ),…, φm(z; μm, σ), p1(x),…, pm(x)) 

estimated from Step 1 & 2, is shown as below:

(9)

(10)

(11)

(12)

where x is a vector of risk factors, and z is realization from the Gaussian mixture model. 

Mean and variance of the Gaussian mixture densities (φ1,…, φm) are denoted as ((μ1,…, μm), 

σ2). Mixing probabilities at a risk level x estimated from (6) are denoted as (p1(x), 

…,pm(x)).
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3. Simulation

We simulate a dataset to demonstrate the proposed method, where disease traits are 

characterized in terms of variance, and thus current analytic practices focusing on seeking 

relationship of mean intensity to risk factors cannot detect such disease traits. In this 

simulation, the primary risk factor (xi) is binary group indicator, exposed or control group. 

True underlying distribution for each group is parameterized by differing combination of 

mixing probabilities of a GMM shown as below.

where common parameters (θ) in the GMM are set as μ1 = −1, μ2 = 0, μ3 = 1, and σ = 1. 

Mixing probabilities for the exposed group (g=1) are set as λ1,1 = λ1,3 = 0.4, and λ1,2 = 0.2 

while those for the control group (g = 0) are as λ0,1 = λ0,3 =0.2, and λ0,2 = 0.6. In this 

example, the distribution of the exposed group has larger variance (1.8 vs. 1.4) and smaller 

kurtosis (−0.34 vs. −0.04) while mean and skewness stay the same across two groups (mean 

= 0; skewness = 0). The number of subjects for each group was 20 (i = 1,…,n; n = 40) and 

the number of measurements per subjects, which represents individual voxels for this study, 

was 100 (j = 1,…,N; N = 100). Measurements from a subject-wise density function were 

simulated through two steps, which is specification of random subject and voxel effect. In 

the first step for specification of random subject effects, we add random jitters to the mixing 

probabilities specified for each group, where  with , and 

(k = 1–3) for all i. Individual density function with random jitters is determined as below.

(13)

where λi,k = λg,k + si,k. In the second step, individual voxel effects, parameterized with two 

parameters of heteroscedastic mean and SD at each voxel (j) denoted as , were 

added to each measurement (zij) from the individual density functions in (13) as below.

(14)

The mean and variance of measurements at each voxel (j) is then  and 

 from the equation (14), where Κ1 and Κ2 are mean and variance of zij across 

subjects (i) and denoted as Κ1 = E(zij) and Κ2 = Var(zij), respectively. The proposed 

normalization procedure was applied and followed by the two subsequent procedures of 

estimating density functions for individuals and groups. In Fig. 2, two histograms with raw 

and normalized data from all the subjects of each group are illustrated, where normalized 

data provides better contrast between two groups. Three Gaussian components were selected 

based on AIC. We order the estimated Gaussian densities, denoted by Gk, by their means in 
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ascending manner so that G1 and G3 represent the Gaussian densities with the lowest and the 

greatest means, respectively. The subsequent multinomial logistic regression model takes the 

G2 as reference and models multinomial log-odds for each of the other two Gaussians over 

the referent. While group effect was not significant with the mean of measurements from 2-

group t-test (p = 0.61), significance of group effect was found from the proposed approach 

for G1 over G2 (beta= 1.72; p = 4.0 × 10−4) and G3 over G2 (beta= 1.96; p = 7.0 × 10−5). 

The estimated mixing probability  was (0.39, 0.18, 0.42) for the exposed 

group and (0.22, 0.59, 0.19) for the control group while estimated common parameters in the 

GMM were .

4. Real FA data analysis

4.1. Ethics Statement

After Albert Einstein College of Medicine Institutional Review Board (IRB) approval, 

Health Insurance Portability and Accountability Act (HIPAA) compliance and written 

informed consent, subjects were prospectively enrolled between August 2006 and May 2010 

through advertisements to examine effect of aging on brain and to demonstrate the proposed 

approach.

4.2. Demonstration of the aging effects

Forty-nine normal subjects were included: 25 males and 24 females, with ages ranging from 

20 to 60 years, years of education ranging from 7 to 25 years, and no history of medical, 

neurological or psychiatric disease.

We use the proposed method to demonstrate heterogeneous aging mechanism by difference 

in the brain development phase with two WM tracts, the posterior limb of internal capsule 

and the posterior thalamic radiation, where maturity of the former is followed by the latter. 

Two tracts were delineated by a JHU-MNI-SS atlas (JHU-MNI-SS-WMPM-Type-II) with 

comprehensive WM parcellation and each of which consist of 6592 and 12952 voxels, 

respectively. Three Gaussian densities (k = 3) were determined as optimal for the proposed 

direct method based on AIC criterion for the two WM tracts. Three putative risk factors that 

we examined were: age, gender, and years of education.

Multinomial logistic regression was applied for estimating mixing probabilities across 

subjects with three risk-factors, age, gender, and years of education, and the interaction 

terms. The multinomial logistic regression model takes the G1 as reference and models 

multinomial log-odds for each of the other two Gaussians over the referent. As a result, we 

found a significant age effect (beta = −0.085; p-value = 0.047) in the multinomial log-odds 

of G3 over G1 for the posterior thalamic radiation while a borderline significance (beta= 

−0.057; p-value = 0.061) was found in the multinomial log-odds of G2 over G1 for the 

posterior limb of internal capsule. We note that no significant effects of gender, education or 

interaction effects were found: p-values = 0.98, 0.70, 0.67, 0.75 respectively for gender, 

education, gender × age, gender × education with the posterior limb of internal capsule; p-

values = 0.85, 0.63, 0.75, 0.69 with the posterior thalamic radiation, where the reported p-

value was the minimum taken from two logit analyses, G2 over G1 and G3 over G1 for each 

Kim et al. Page 10

J Neurosci Methods. Author manuscript; available in PMC 2017 November 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



covariate. Significantly increased mixing probability of G1 provides much further 

information on density shape by aging beyond decreased mean FA as detailed below.

Estimated mixing probabilities (p1, p2, p3) against age from Eq. (6) are shown in Fig. 3 for 

each WM tract, the posterior limb of internal capsule (2a) and the posterior thalamic 

radiation (2b), where p1, p2, and p3 are represented by solid gray, dashed black, and dash-dot 

black, respectively. It is observed that the mixing probability to the lowest Gaussian density, 

p1, increases rapidly while either p2 or p3 declines from both WM tracts. Specifically, two 

mixing probabilities dominating age-related change are (p1↑, p2↓) for the posterior limb of 

internal capsule and (p1↑, p3↓) for the posterior thalamic radiation, respectively while the 

remainder shows very subtle change over age. These results suggest that distributions of FA 

are characterized in an aging-related pattern; mean becomes smaller and positive skewness 

becomes larger as age increases. We also found in the posterior limb of internal capsule that 

two dominating Gaussian densities attain almost evenly divided weights (p1 ≈p2) 

progressively as age approaches to sixty while p2 is close to one at age of twenty (p1 ≪p2). 

This pattern implies higher variance in the FA distribution for older ages while such a 

change in variance is much smaller in the posterior thalamic radiation.

A centile curve at a γ is a plot of zγ(x) against a covariate x, where zγ (x) is γ × 100% 

percentile from the density function estimated at a risk-level x. Centile curve was adopted to 

visualize distributional shape change by varying x values. zγ(x) from a Gaussian mixture 

density can be calculated as below by using nor1Mix (R package).

(15)

Fig. 4 shows seven centile curves for the mixture Gaussian density estimated from Eq. (15), 

with percentiles γ= 0.005, 0.025, 0.1, 0.5, 0.9, 0.975, 0.995 for each WM tract, (3a) the 

posterior limb of internal capsule and (3b) the posterior thalamic radiation. We find smaller 

mean and larger variance in FA distribution in older subjects with the posterior limb of 

internal capsule, where such increase in variance with age is greater compared to the 

posterior thalamic radiation.

Each of the four typical summary statistics describing shapes of the density functions, mean, 

variance, skew and kurtosis, expressed as a function of age ((9)–(12)) were plotted in Fig. 5 

(a)–(d). We found similar decrease of mean and kurtosis with age in both WM tracts, while 

variance and skewness increased with age. The rate of change of each shape parameter 

differed in each tract reflecting heterogeneous aging mechanism.

5. Discussion

A limitation in the current FA imaging data analysis is that it focuses on only first order 

moment (or simply mean) in identifying risk factors. Consequently, identification of effects 

of risk factors on higher order moments, which enables fuller characterization of 

distribution, have been ignored. While GAMLSS-MX is an available R routine package for 
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assessing such associations in a general data structure which has one or a few measurements 

per subject, its application for brain imaging data analysis may not be possible due to a 

massive number of measurements per subject. We demonstrated that our proposed method 

was able to identify putative risk factors by examining additional three higher order moment 

statistics: variance, skewness, and kurtosis.

The proposed algorithm was applied to characterize distributional change of FA by age 

within two WM regions: the posterior limb of internal capsule and the posteriorthalamic 

radiation, where maturity of the former is followed by the latter. We found that the 

distributions in those two tracts tended to exhibit lower mean and lower kurtosis, higher 

variance and higher skewness as age increases. Although the two WM tracts showed 

similarity in aging-related trend of FA distribution, we observed that the posterior thalamic 

radiation showed a greater rate of decline in mean and a more shrunken distribution toward 

lower FA suggested by smaller mean and variance as age increases. This finding supports a 

neurodevelopmental theory, in that the posterior thalamic radiation matured later showed 

greater aging-related change. We recognize that larger and more diverse samples will be 

required to fully characterize age related change at the population level.

While we demonstrated the proposed method with two WM tracts, the sizes of which are 

between 7000 and 13,000 voxels, the proposed method can be applied to the whole brain-

wide data, where a typical size is about a half million voxels as shown in Supplementary 

material 3. We also tested significance of aging effect on the mean FA from each of the two 

white matter ROIs by applying general linear model with two other covariates, gender and 

education. Significant age effects were found in both ROIs with p = 0.0021 (posterior 

thalamic radiation) and p = 0.0201 (posterior limb of internal capsule) while no significant 

gender and years of education effects were found. It is noteworthy that aging also triggers 

distribution-wide change in the white matter tracts as revealed in this study.

A few limitations of the proposed method are discussed as follows. The number of 

parameters for the direct estimation method increases linearly with increasing number of 

subjects (n), since the ratio of the number of parameters in the direct method compared to 

the indirect method is 1/2(n + 1)(1 − 1/m) + 1/m where the number of m-Gaussian 

components is fixed. This steep increase may create many local maxima in the search space; 

a stochastic search based on the EM algorithm could be problematic with a large number of 

subjects. In addition, due to the larger number of parameters to be estimated, more intensive 

computation is required for the direct method compared to the indirect method. To reduce 

the number of parameters estimated for subject-wise density function, a GMM that 

facilitates penalization on excessive number of parameters could be considered.

The optimal number of Gaussian components required for GMM was determined based on 

AIC in this study by treating each voxel measurement as independent observation. It is 

known that voxel values in a neighborhood are somewhat correlated. A further study on 

comparison of other criteria, e.g. Bayesian Information Criterion (BIC), and cross-

validation, with regard to optimality in correlated brain imaging data is warranted. We 

believe that this examination is an important topic for future study.
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In conclusion, our proposed method is powerful for analysis of brain imaging data with very 

large volume sizes of voxels when detection of risk factors associated with any type of 

microstructural neurodegenerations is of interest.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

• Analyses focused on mean intensity fail to detect deviation in higher order 

moments by risk factors.

• A two-step Gaussian mixture model approach was proposed to meet such a 

limitation in current imaging data analysis.

• Aging-related FA change was found in mean, variance, skewness, and 

kurtosis.
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Fig. 1. 
Diagram for the proposed method. Data structure for the proposed procedure is shown in a 

matrix format, where columns are for voxels, and rows for subjects. The proposed procedure 

consists of two steps, where Step 1 is shown in blue for within-subject analysis and Step 2 in 

red for between-subjects analysis. (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.)
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Fig. 2. 
Demonstration of normalization effect on simulated data. Two histograms with raw data ((a), 

(c)) and normalized data ((b) and (d)) from the pooled data set with all the subjects of each 

group are illustrated. Estimated density function was overlaid in red solid line to the 

histogram with the normalized data from each group. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. 
Mixing probability against age. Three mixing probabilities (p1, p2, and p3) estimated in Step 

2 are plotted against age for each WM region (the posterior limb of internal capsule (a) and 

the posterior thalamic radiation (b)), where each mixing probability is represented by solid 

gray, dashed black, and dash-dot black, respectively.
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Fig. 4. 
Centile curves. Seven centile curves with γ= 0.005, 0.025, 0.1, 0.5, 0.9, 0.975, 0.995 were 

estimated with simulated random samples from GMM density estimated at each age for each 

WM region (the posterior limb of internal capsule (a) and the posteriorthalamic radiation 

(b)). The middle blue curve is the 50th percentile curve. (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this article.)

Kim et al. Page 19

J Neurosci Methods. Author manuscript; available in PMC 2017 November 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
Four moment-based summary statistics (mean, variance, skew, kurtosis) against age. 

Estimated trajectory of mean (a), variance (b), skew(c), and kurtosis (d) against age are 

demonstrated for two WM tracts: the posterior limb of internal capsule (solid line) and the 

posterior thalamic radiation (dotted line).
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Table 1

EM algorithm for the direct method.

Steps Equations

E-step

M-step

Note: 1. A variable noted with (t) is the estimated value for the variable at the t-th iteration.

2.  and φ is the standard Gaussian density function.
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