
Neurobiology of Aging 141 (2024) 102–112

Available online 3 June 2024
0197-4580/© 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

Hypothalamic MRI-derived microstructure is associated with 
neurocognitive aging in humans 

Sandra Aleksic a,*, Roman Fleysher b,c, Erica F. Weiss d, Noa Tal e, Timothy Darby f, 
Helena M. Blumen d,g, Juan Vazquez h, Kenny Q. Ye i,j, Tina Gao a, Shira M. Siegel b, 
Nir Barzilai a,k, Michael L. Lipton b,l,1, Sofiya Milman a,k,1 

a Department of Medicine, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, United States 
b Department of Radiology, Columbia University Irving Medical Center, New York, NY, United States 
c Department of Radiology, Albert Einstein College of Medicine, Gruss Magnetic Resonance Research Center, Bronx, NY, United States 
d Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, United States 
e Department of Medicine, Cedars-Sinai, Los Angeles, CA, United States 
f Albert Einstein College of Medicine, Bronx, NY, United States 
g Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States 
h Department of Internal Medicine, John Hopkins University, Baltimore, MD, United States 
i Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, United States 
j Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, United States 
k Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, United States 
l Department of Biomedical Engineering, Columbia University, New York, NY, United States   

A R T I C L E  I N F O   

Keywords: 
Hypothalamus 
Aging 
Cortical thickness 
Cognition 
Human 
Magnetic resonance imaging (MRI) 

A B S T R A C T   

The hypothalamus regulates homeostasis across the lifespan and is emerging as a regulator of aging. In murine 
models, aging-related changes in the hypothalamus, including microinflammation and gliosis, promote accel
erated neurocognitive decline. We investigated relationships between hypothalamic microstructure and features 
of neurocognitive aging, including cortical thickness and cognition, in a cohort of community-dwelling older 
adults (age range 65–97 years, n=124). Hypothalamic microstructure was evaluated with two magnetic reso
nance imaging diffusion metrics: mean diffusivity (MD) and fractional anisotropy (FA), using a novel image 
processing pipeline. Hypothalamic MD was cross-sectionally positively associated with age and it was negatively 
associated with cortical thickness. Hypothalamic FA, independent of cortical thickness, was cross-sectionally 
positively associated with neurocognitive scores. An exploratory analysis of longitudinal neurocognitive per
formance suggested that lower hypothalamic FA may predict cognitive decline. No associations between hy
pothalamic MD, age, and cortical thickness were identified in a younger control cohort (age range 18–63 years, 
n=99). To our knowledge, this is the first study to demonstrate that hypothalamic microstructure is associated 
with features of neurocognitive aging in humans.   

1. Introduction 

To ameliorate the rising global burden of aging-related morbidity, a 
better understanding of biological regulation of human aging is neces
sary. The hypothalamus, a collection of diencephalic nuclei responsible 
for neuroendocrine regulation of growth, reproduction, and mainte
nance of homeostasis, is emerging as a biological regulator of systemic 
aging (Leng et al., 2023; Sadagurski et al., 2017; Sadagurski et al., 

2015a; Sadagurski et al., 2015b; Zhang et al., 2013b; Zhang et al., 2017). 
Several physiological functions altered in aging, including energy 
metabolism, circadian rhythms, stress response, and hormone release, 
are regulated by the hypothalamus. The hypothalamus also regulates 
several conserved neuroendocrine pathways implicated in longevity, 
including the growth hormone/insulin-like growth factor-1 (GH/IGF-1), 
thyrotropin, and gonadotropin pathways (Brown-Borg, 2007; Melmed, 
2016). Given that the hypothalamic nuclei represent neuroanatomic 
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substrates for the neuroendocrine pathways implicated in longevity, it is 
plausible that aging-related deterioration in the structure and function 
of the hypothalamus may promote systemic aging. 

Several lines of evidence from animal models indicate that structural 
and functional changes that develop in the hypothalamus with aging 
may modulate systemic markers of aging and morbidity. Micro
inflammation and gliosis in the mediobasal hypothalamus, which de
velops with aging, was shown to play a causal role in accelerating whole 
body aging in mice, evidenced by reduced lifespan and health span, and 
accelerated neurocognitive decline (Leng et al., 2023; Zhang et al., 
2013b). On the other hand, murine genetic models with extended life
spans, such as Ames dwarf, or those exposed to life-extending in
terventions, including caloric restriction, acarbose, 17-α estradiol and 
nordihydroguaiaretic acid, display reduced hypothalamic micro
inflammation and gliosis (Sadagurski et al., 2017; Sadagurski et al., 
2015a; Sadagurski et al., 2015b). Additionally, aging-related reduction 
in SIRT-1 expression in the suprachiasmatic nucleus of the hypothala
mus amplified aging-related circadian dysregulation (Chang and Guar
ente, 2013) and aging-related increase in mammalian target of 
rapamycin (mTOR) signaling in the hypothalamic proopiomelanocortin 
(POMC) neurons promoted weight gain in aged animals (Yang et al., 
2012). This evidence from animal models supports the role of the hy
pothalamus in systemic aging and suggests that interventions aimed at 
restoring hypothalamic integrity may have potential to extend health 
span. Nonetheless, contributions of the hypothalamus to neurocognitive 
and systemic aging in humans remains unknown. 

In humans, microstructural integrity in the hypothalamus can be 
non-invasively assessed with magnetic resonance imaging (MRI) 
(Thomas et al., 2019). Diffusion-weighted magnetic resonance (MR) 
imaging can track three-dimensional diffusion of water, which reflects 
microstructural central nervous system changes such as inflammation 
and gliosis (Alexander et al., 2007; Budde et al., 2011; Hagen et al., 
2007). Mean diffusivity (MD), which reflects the direction-independent 
magnitude of diffusion, and fractional anisotropy (FA), which reflects 
directional cohesion of anisotropic diffusion, have been used to provide 
readings of the microstructure of subcortical gray matter regions (Abe 
et al., 2008), including the hypothalamus (Puig et al., 2015; Thomas 
et al., 2019). Higher MD in the hypothalamus, attributed to abnormal 
hypothalamic microstructure, has been associated with obesity (Thomas 
et al., 2019). However, studies that evaluated hypothalamic structure 
and function in aging humans are scarce. Several studies that assessed 
the association of hypothalamic diffusion with age provided contradic
tory results (Spindler and Thiel, 2022; Thomas et al., 2019). One 
cross-sectional study found no significant association between hypo
thalamic MR diffusion metrics and cognition. However, this study re
ported limited neurocognitive assessments and was not focused on 
individuals in the later decades of life, when neurocognitive aging ac
celerates (Spindler and Thiel, 2022). Thus, it remains unresolved 
whether deterioration in hypothalamic microstructure represents a 
feature of human aging and if hypothalamic microstructural integrity 
plays a role in neurocognitive aging. 

Given the incomplete characterization of hypothalamic microstruc
ture with chronologic and neurocognitive aging in humans, we inves
tigated relationships among hypothalamic microstructure, age, and 
features of neurocognitive aging, including regional cortical thickness 
and cognition, in two cohorts of community-dwelling adults with ages 
spanning from adolescence into advanced old age. 

2. Materials and methods 

2.1. Study participants 

2.1.1. LonGenity Brain MRI cohort 
In the LonGenity Brain MRI cohort (n = 124), we investigated the 

relationships between hypothalamic MD and FA with age, cortical 
thickness, and cognition. The participants were enrolled into the 

LonGenity Brain MRI Study from an ongoing longitudinal cohort study, 
LonGenity (Gubbi et al., 2017). The LonGenity cohort is composed of 
Ashkenazi Jewish individuals aged 65 and older (n = 1225, 57 % fe
male), half of whom are offspring of parents with exceptional longevity. 
Exclusion criteria for LonGenity are dementia at baseline and severe 
visual or hearing impairment, which would prevent participants from 
participating in study assessments. Participants undergo annual neuro
cognitive and clinical evaluations that include anthropometric mea
surements and collection of detailed medical histories. Education 
attainment is recorded at study baseline. Eligible participants, without a 
history of stroke, neurodegenerative disease, and traumatic brain injury, 
are recruited at their annual study visits into the LonGenity Brain MRI 
Study, focused on understanding the correlates of brain imaging and 
healthy aging. Blood samples are collected at the study visit when MRI is 
performed and hemoglobin A1c is measured. 

2.1.2. Lifespan cohort 
In the Lifespan cohort (n = 99), we investigated the relationships 

between hypothalamic MD and FA with age and cortical thickness. The 
Lifespan study was started at Albert Einstein College of Medicine with 
the aim to define structural and functional brain changes across the 
human lifespan and provide a database of normative imaging data for 
assessment of age-related changes of the brain. Study participants were 
recruited from the community and comprise healthy individuals (50 % 
female) aged 18–63 years. Exclusion criteria for Lifespan participants 
included history of head injury, psychiatric disease (bipolar disorder, 
schizophrenia, anxiety, depression), neurological disease, diabetes, 
heart disease, hypertension, and contraindication to MRI. 

2.2. Neurocognitive assessments 

The LonGenity cohort undergoes neurocognitive testing at annual 
study visits, including at the annual visit within three months of the 
brain MRI. Out of 124 LonGenity Brain MRI participants, at the time of 
this analysis 79 had at least one annual follow-up neurocognitive 
assessment performed at least one year after the MRI: In total, there were 
249 annual neurocognitive assessments, including 124 at the time of the 
MRI and 125 after the MRI (Table S1), which were included in the 
exploratory analysis. 

A structured neurocognitive battery of 8 tests was administered, 
which covered cognitive domains that included speed of processing, 
attention and executive functions (Trail Making Test Part A/Part B 
(Reitan, 1955), Digit Span (Wechsler, 1981), Digit Symbol (Wechsler, 
1981)); verbal memory (Free and Cued Selective Reminding Test 
(Buschke et al., 1999; Buschke et al., 2006), Logical Memory (Wechsler, 
1987)); and language (Phonemic and Category fluency (Goodglass and 
Kaplan, 1983), Boston Naming Test 15-item version (Stern et al., 1992)). 
Standardized (Z) scores were calculated for each of the 10 scores 
generated from the 8 tests. Appropriate standardized scores were aver
aged to create composite scores of overall and theoretical 
domain-specific (i.e., executive, memory, language, attention, and 
visuomotor) neurocognitive functioning (for test-domain mapping, see 
Supplementary Methods). An overall neurocognitive composite score 
which included standardized scores for each measure was used as a 
surrogate measure of overall neurocognitive functioning. For all neu
rocognitive composite scores, a higher value indicates better 
performance. 

2.3. MRI acquisition 

Brain MRI scanning in both study cohorts was performed with a 
Philips 3 T Ingenia Elition system using a 32-channel head coil (Philips 
Medical Systems, Best, Netherlands) at the Albert Einstein College of 
Medicine. A board-certified neuroradiologist (MLL) reviewed all images 
for incidental findings and visible signs of prior significant neurological 
disease (e.g., stroke, encephalitis, hemorrhage) were recorded. 
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Participants with incidental pathologic findings in the region of the 
hypothalamus were excluded. Detailed description of MRI acquisition 
protocol is available in Supplementary Data. 

2.4. Image processing 

2.4.1. Image processing pipeline infrastructure 
A custom framework (RoboDuct) was used to efficiently generate 

analysis-specific data processing pipelines leveraging optimal FSL 
(Jenkinson et al., 2012; Smith et al., 2004; Woolrich et al., 2009), AFNI 
(Cox, 1996), ANTs (Avants et al., 2011; Avants et al., 2014; Tustison 
et al., 2014), FreeSurfer (Dale et al., 1999; Desikan et al., 2006) and 
other libraries. Basic operations (e.g., EPI distortion correction, regis
tration using white matter (Greve and Fischl, 2009), brain extraction) 
have been implemented as in the Human Connectome Project (Glasser 
et al., 2013). RoboDuct inserts check points for manual validation where 
its modules might perform suboptimally (e.g., brain extraction). 
Diffusion-weighted imaging (DWI) data underwent motion and eddy 
current correction and EPI distortion correction followed by diffusion 
tensor imaging (DTI) fit to generate standard DTI parameters. The DTI 
parameter maps were registered to T1 weighted image using rigid body 
transformations for subsequent region of interest (ROI) analyses 
(Fleysher et al., 2018). 

2.4.2. Hypothalamic delineation 
A most-probable atlas of the hypothalamus was generated using the 

following procedure: First, we selected brain MRI images of 18 older 
adults from the LonGenity Brain MRI study (50 % female). Under the 
supervision of a neuroradiologist (MLL), three raters (SA, NT, TD) per
formed manual delineation of the hypothalamus on T1-weighted coro
nal images using the ITK-SNAP polygon tool, according to established 
anatomical landmarks (Chen et al., 2021). All raters were trained on 
relevant anatomy, landmarks to be used for the delineations, and 
ITK-SNAP software tools prior to beginning of any work related to 
generating the most-probable hypothalamus atlas. Each rater delineated 
12 MRI scans, thus each of the 18 scans was delineated by two raters. 
Dice index was calculated to assess the degree of spatial overlap between 
hypothalamic regions delineated by two raters (Dice index = 2*volume 
of overlap / (sum of volumes of two regions); values range: 0–1, with 
higher value meaning higher agreement). Median Dice index for 
agreement between the raters was 0.85 (range 0.72–0.93). Next, the 36 
manually delineated masks of 18 hypothalami were transformed to the 
template image of the youngest participant in the LonGenity Brain MRI 
dataset (65-year-old male), using nonlinear registration. Each pixel on 
the template was assigned one of three labels (left hypothalamus, right 
hypothalamus, outside of the hypothalamus) based on majority vote of 
the raters’ 36 masks. The pixels that were assigned a label within the 
hypothalamus based on the majority vote were included in the 
most-probable hypothalamus atlas. Hypothalamus was delineated in 
each individual by transforming the most-probable hypothalamus atlas 
to the individual’s T1-weighted volume. These masks were compared to 

the manually delineated masks in 10 (5 female) randomly selected 
LonGenity Brain MRI study participants using Dice index, which showed 
good agreement (median 0.76, range 0.60–0.85; Figure 1). Other 
anatomical ROIs (amygdala, hippocampus, cerebral cortical regions) on 
individual T1 weighted images were delineated using ASEG and 
WMPARC modules of FreeSurfer version 6.0 (Dale et al., 1999; Desikan 
et al., 2006). Average of DTI metrics (MD FA) were computed for all 
voxels within the hypothalamus, amygdala, and hippocampus on each 
side. For each ROI, volume-weighted means of average MD and FA for 
right and left were generated and used in further analyses. 

Given the proximity of the hypothalamus to the cerebrospinal fluid 
(CSF), we tested whether hypothalamic-CSF partial volume effects in the 
edge voxels (Figure S1) could explain observed associations between 
hypothalamic DTI metrics and age. We performed a sensitivity analysis 
in which an “eroded” hypothalamic mask was created, which excluded 2 
voxels at the interface of the hypothalamic margin and the CSF. To 
generate the eroded hypothalamic mask, synthStrip module of Free
Surfer was first used to remove non-brain tissue. From the remaining 
brain mask, the 3rd ventricle, delineated by FreeSurfer, was removed. 
The remaining brain mask was eroded by 2 mm and intersected with our 
hypothalamic mask to obtain the portion of the hypothalamus which is 
at least 2 mm from the hypothalamic-CSF margin. 

2.4.3. Cortical thickness 
Regional cortical thickness was measured using FreeSurfer version 

6.0 in LonGenity Brain MRI Cohort (Dale et al., 1999; Desikan et al., 
2006) and FreeSurfer 7.1 in Lifespan. The entire cerebral cortex was 
segmented into 34 cortical regions in each hemisphere, based upon the 
Desikan-Killiany atlas (Desikan et al., 2006). Mean cortical thickness in 
each of the 34 cortical regions of the left and right hemisphere were 
added (i.e. collapsed), to reduce the number of statistical models to be 
performed given that no hemisphere-specific analyses were planned. 
Collapsed cortical regions were grouped into cerebral lobes (Klein and 
Tourville, 2012) (Supplementary Data). Overall white matter lesions 
burden was estimated based on white matter hypointensities measure 
which is automatically computed from T1-weighted images by Free
Surfer. Additionally, in 115 of 124 LonGenity participants, 
semi-quantitative ratings of white matter hyperintensities generated 
from T2W-FLAIR images with Age-Related White Matter Changes scale 
(ARWMC) (Wahlund et al., 2001) were used to calculate a global white 
matter hyperintensity burden score as an alternative measure of white 
matter lesion burden (Supplementary Methods). 

2.5. Statistical analysis 

2.5.1. Cross-sectional analysis 
Normality was assessed by inspection of the histograms and by 

Shapiro-Wilk test with a two-tailed p-value threshold of < 0.05. MD and 
FA metric values were transformed into z-scores (zMD and zFA, 
respectively). The associations between age (predictor) and hypotha
lamic zMD and zFA (outcomes) were assessed using univariable and sex- 

Fig. 1. Comparison of the manual and automated delineation of the hypothalamus in a representative LonGenity Brain MRI cohort participant.  
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adjusted multivariable linear regression models. The associations be
tween hypothalamic zMD and zFA (predictors) with regional cortical 
thickness measures and overall and domain-specific neurocognitive 
scores (outcomes) were assessed using multivariable linear regression, 
with age, sex, education years, estimated total intracranial volume 
(eTIV) and the overall white matter lesion burden as covariates. For the 
associations with cortical thickness in 34 brain regions, we first per
formed multivariate multivariable general linear models (GLMs), with 
either MD or FA as predictors of interest, followed by univariate 
multivariable GLMs; univariate GLMs were only interpreted if the 
overall multivariate GLM models were significant (p < 0.05). We 
included adjustments for overall white matter lesion burden measure in 
order to determine if the observed associations between hypothalamic 
DTI metrics, regional cortical thickness, and cognition were above and 
beyond previously observed relationships between cerebral cortical at
rophy and white matter lesions with aging (Habes et al., 2016; Wen 
et al., 2006). Given prior reports of the associations between hypotha
lamic DTI metrics and obesity (Thomas et al., 2019), impaired glucose 
metabolism (Rosenbaum et al., 2022), and hypertension (Purkayastha 
et al., 2011a), we tested the associations of hypothalamic zMD and zFA 
with body mass index (BMI), hemoglobin A1c, and history of diabetes 
and hypertension, in age and sex-adjusted linear regression models; 
given that we did not find significant associations (p > 0.05, Table S2), 
these variables were not included as covariates in the models. As
sumptions for linear regression were assessed and met, including 
normality, homoscedasticity, linearity, and absence of multicollinearity, 
influential observations, and specification errors. 

2.5.2. Sensitivity analysis 
To determine if the observed cross-sectional associations between 

hypothalamic DTI metrics and regional cortical thickness and neuro
cognitive scores could be confounded by a generalized deterioration of 
the microstructure of the limbic system, to which the hypothalamus 
belongs, we performed sensitivity analyses which included additional 
adjustment for zMD and zFA of the hippocampus and amygdala, which 
are subcortical gray matter structures in the limbic system that are 
involved in cognition and demonstrate microstructural alterations with 
aging (den Heijer et al., 2012; Jiang et al., 2019). 

To assess whether observed age-associations of hypothalamic diffu
sion metrics could result from age-biased CSF-partial volume effects 
(above), we ran univariable linear regression models to evaluate for 
dependence of hypothalamic volume on age and hypothalamic diffusion 
parameters. Additionally, we repeated analysis of associations between 
age (predictor) and hypothalamic zMD and zFA (outcomes) but limited 
to the region of the hypothalamus distant from the CSF (eroded hypo
thalamus above). 

2.5.3. Longitudinal analysis 
All available annual neurocognitive assessments, which included 

124 assessments at the time of the MRI and 125 assessments performed 
at least one year after the MRI, were analyzed using linear mixed effect 
models, with individual intercept as the random effect and the common 
age effect for all subjects. The main fixed effect predictor was hypo
thalamic zMD/hypothalamic zFA. Additional covariates included in the 
models were sex, education, white matter hypointensities, eTIV, and 
whole-brain cortical thickness. The computation was performed using R 
library lme4, and the statistical significance were assessed using the 
likelihood ratio tests. 

Statistical analysis was performed using STATA software, version 15 
(StataCorp LP, College Station, TX) and R language (R version 4.3.2; R 
Foundation for Statistical Computing). A two-tailed Benjamini-Hoch
berg (BH) - adjusted p-value < 0.05 (Yekutieli and Benjamini, 1999), 
was considered statistically significant. 

The LonGenity study was approved by the institutional review board 
(IRB) at the Albert Einstein College of Medicine. The Lifespan study was 
approved by the IRB at the Albert Einstein College of Medicine and 

Columbia University. Informed consent was obtained from all study 
participants. 

3. Results 

3.1. Hypothalamic microstructure varies with age and sex in older, but 
not younger adults 

Characteristics of the LonGenity Brain MRI and Lifespan cohorts are 
presented in Table 1 and Table S3, respectively. In sex-adjusted analysis, 
age was significantly positively associated with hypothalamic zMD in 
the LonGenity Brain MRI cohort (beta [95 % CI] = 0.04 [0.01, 0.06], p =
0.005), but not in the Lifespan cohort (Table S4 and Figure 2a, c). There 
were no significant associations between age and hypothalamic zFA in 
either cohort (Table S4, Figure 2b, d). In age-adjusted models, sex was 
not significantly associated with hypothalamic zMD in either cohort, 
while men had lower hypothalamic zFA compared to women in the 
LonGenity Brain MRI cohort (beta [95 % CI] for male sex = − 0.42 
[− 0.78, − 0.07], p = 0.02), but not the Lifespan cohort (Table S4). 

In sensitivity analysis, we found no statistically significant associa
tion between hypothalamic volume and age or hypothalamic volume 
and hypothalamic diffusion parameters (Table S5). MD of the eroded 
hypothalamic mask, despite representing only 28 % of the average hy
pothalamic volume located away from the CSF, demonstrated positive 
trend with age similar to the one observed with the MD of the entire 
hypothalamus (Pearson’s correlation coefficient r = 0.15, p = 0.10; 
Figure S2). 

3.2. Hypothalamic microstructure is associated with regional cortical 
thickness in older, but not younger adults 

In models adjusted for age, sex, years of education, estimated total 
intracranial volume, and white matter hypointensities, zMD in the hy
pothalamus was negatively associated with average frontal lobe, parie
tal lobe, and cingulate cortical thickness in LonGenity Brain MRI cohort 
(beta [95 % CI], BH-adjusted p values): –0.06 [− 0.10, − 0.02], 0.008; 

Table 1 
LonGenity Brain MRI Study Participant characteristics (n¼124).  

Demographics  

Age (years) 78.7 (74.3, 83.4) 
Sex, female (%) 58 
Familial longevity (%) 59 
BMI (kg/m2), n=108 26.4 (23.9, 29.2) 
HbA1c (%), n=105 5.5 (5.4, 5.8) 
Education (years) 18 (16, 20) 
Diabetes mellitus %, n=123 11 
Hypertension %, n=122 48 
Cancer % 38 
Cardiovascular disease %, n=107 16 
Neurocognition composite scores  
Overall, n=120 0.19 (-0.05, 0.64) 
Executive, n=122 0.23 (-0.20, 0.72) 
Memory, n=123 0.39 (-0.14, 0.67) 
Language, n=121 0.24 (-0.16, 0.75) 
Attention, n=123 0.21 (-0.23, 0.64) 
Visuomotor, n=123 0.23 (-0.24, 0.75) 
MRI metrics of lobar cortical thickness (mm) 
Frontal 4.7 ± 0.21 
Parietal 4.3 ± 0.22 
Temporal 5.2 ± 0.25 
Occipital 3.6 ± 0.19 
Cingulate 5.2 ± 0.28 
MRI diffusion metrics in the hypothalamus 
Mean diffusivity (MD; mm2/s) 0.00127 ± 0.000144 
Fractional anisotropy (FA) 0.27 ± 0.034 

Continuous data are represented as median (interquartile range) or means ±
standard deviation. Where denoted, number indicates number of participants 
with available data where data are missing. 
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− 0.07 [− 0.10, − 0.03], 0.005; − 0.07 [− 0.12, − 0.02], 0.01, respectively;  
Table 2). The represented multivariable linear regression models 
explained between 8 % and 22 % of the variability of the lobar cortical 
thickness (R2), with hypothalamic zMD explaining 6–7 % of the vari
ability (delta R2). The results were similar when white matter hyper
intensities burden score was used to estimate white matter lesion burden 
instead of white matter hypointensities (Table S6). The analysis of the 34 
anatomical subregions demonstrated that zMD in the hypothalamus was 
negatively associated with cortical thickness across regions within all 
cerebral lobes, with 12 out of 34 examined regions surviving correction 
for multiple testing (Table 3). The greatest effect size was observed in 
the medial orbitofrontal, frontal pole and rostral anterior cingulate re
gions (beta [95 % CI], BH-adjusted p values: –0.13 [–0.19, –0.06], 0.03; 

–0.12 [–0.20, –0.04], 0.03; –0.12 [–0.20, –0.04], 0.02, respectively; 
Table 3). Including zMD from the two other limbic regions, hippocam
pus and amygdala, in these models did not substantially alter the 
observed negative associations between zMD in the hypothalamus and 
regional cortical thickness (Tables S7, S8). In Lifespan cohort, no sig
nificant associations were found between hypothalamic zMD and lobar 
cortical thickness (Table S9). Hypothalamic zFA was not significantly 
associated with cortical thickness in either LonGenity Brain MRI 
(Table S10) or Lifespan cohort (data not shown). 

3.3. Hypothalamic microstructure is associated with cognition 
independent of cortical thickness in older adults 

3.3.1. Cross-sectional analysis 
Hypothalamic zFA was positively associated with the overall neu

rocognitive composite score (Figure 3b), which persisted after adjust
ments for age, sex, years of education, estimated total intracranial 
volume, and white matter hypointensities (beta [95 % CI] = 0.16 [0.07, 
0.25], BH-adjusted p value = 0.006; Table 4). The represented regres
sion model explained 32 % of the variability in the overall neuro
cognitive composite score (R2), with hypothalamic zFA explaining 7 % 
of the variability (delta R2); the effect size on the overall cognition per 
1 SD of FA was equivalent to ~8 years younger age. Analysis by indi
vidual neurocognitive domains, found that zFA in the hypothalamus had 
significant positive associations with all domain-specific scores except 
visuomotor speed (BH-adjusted p value = 0.053), with greatest relative 
effect size on the executive and language domain scores (beta [95 % CI], 
BH-adjusted p value: 0.16 [0.02, 0.30], 0.029; 0.17 [0.03, 0.30], 0.03, 
respectively; Table 4). Given the observed associations between hypo
thalamic microstructure and cortical thickness, we added whole-brain 
cortical thickness to the model, which did not alter the observed posi
tive association between zFA and neurocognitive composite scores 
(Table 4). Additionally, replacing white matter hypointensities with 

Fig. 2. Associations between age and z-scores of hypothalamic mean diffusivity (zMD; panel a, c) and fractional anisotropy (zFA; panel b, d) in LonGenity Brain MRI 
(a, b, n = 124) and Lifespan (c, d, n = 99) cohorts; r- Pearson’s correlation coefficient. 

Table 2 
Associations between mean diffusivity (MD) in the hypothalamus and lobar 
cortical thickness in the LonGenity Brain MRI cohort.  

Lobar cortical 
region 

Beta (95 % CI) p BH-p R2 Delta R2 

Frontal -0.06 (-0.10, 
-0.02)  

0.005  0.008  0.08  0.06 

Parietal -0.07 (-0.10, 
-0.03)  

0.001  0.005  0.22  0.07 

Temporal -0.04 (-0.08, 0.01)  0.13  0.128  0.11  0.02 
Occipital -0.03 (-0.06, 0.00)  0.07  0.084  0.18  0.02 
Cingulate -0.07 (-0.12, 

-0.02)  
0.004  0.01  0.21  0.06 

Multivariable linear regression, adjusted for age, sex, years of education, esti
mated total intracranial volume and white matter hypointensities (n = 124). 
Beta estimates are represented per 1 standard deviation of MD in the hypo
thalamus, BH-p: Benjamini-Hochberg - adjusted p-value, R2 - standard R2 of the 
model, Delta R2 - increase in model R2 due to addition of hypothalamic MD. BH- 
adjusted p-values were calculated using the set of raw p-values represented in 
the Table. 
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semi-quantitative white matter hyperintensities burden score, did not 
meaningfully change the results (Table S11). Including zFA from the two 
other studied limbic regions, hippocampus and amygdala, in the models 
did not meaningfully alter the results (Table S12). In unadjusted model, 
there was no statistically significant association between zMD in the 
hypothalamus and overall neurocognitive composite (Figure 3a). In 
multivariable models, hypothalamic zMD was negatively associated 

with language domain cognitive scores (beta [95 % CI] = − 0.16 [− 0.31, 
− 0.02], p = 0.028), but this association did not survive adjustment for 
multiple testing (Table S13). 

3.3.2. Longitudinal analysis 
Out of 124 LonGenity Brain MRI participants, 79 had at least one 

annual follow-up neurocognitive assessment performed at least one year 

Table 3 
Associations between mean diffusivity (MD) in the hypothalamus and regional cortical thickness in the LonGenity Brain MRI cohort.  

Regional cortical thickness Beta (95 % CI) p BH-p R2 Delta R2 Regional cortical thickness Beta (95 % CI) p BH-p R2 Delta R2 

Frontal lobe         Temporal lobe        
Superior frontal -0.05 (-0.10, 

0.00) 
0.06  0.10  0.11  0.03 Parahippo-campal 0.03 (-0.07, 

0.14) 
0.554 0.63  0.08  0.00 

Caudal middle frontal -0.02 (-0.06, 
0.03) 

0.497  0.58  0.07  0.00 Entorhinal -0.04 (-0.17, 
0.10) 

0.607 0.64  0.08  0.00 

Rostral middle frontal -0.04 (-0.08, 
0.00) 

0.063  0.10  0.06  0.03 Temporal pole -0.03 (-0.13, 
0.08) 

0.587 0.64  0.08  0.00 

Pars opercularis -0.02 (-0.07, 
0.02) 

0.273  0.36  0.09  0.01 Superior temporal -0.05 (-0.10, 
0.00) 

0.054 0.10  0.18  0.03 

Pars triangularis -0.06 (-0.11, 
-0.02) 

0.006  0.023  0.11  0.06 Middle temporal -0.05 (-0.10, 
0.00) 

0.043 0.09  0.09  0.03 

Pars orbitalis -0.05 (-0.12, 
0.01) 

0.107  0.16  0.07  0.02 Inferior temporal -0.07 (-0.12, 
-0.03) 

0.001 0.011  0.14  0.08 

Lateral orbitofrontal -0.06 (-0.12, 
− 0.01) 

0.028  0.06  0.09  0.04 Transverse temporal 0.00 (-0.06, 
0.07) 

0.962 0.96  0.18  0.00 

Medial orbitofrontal -0.13 (-0.19, 
-0.06) 

0.0009  0.031  0.15  0.10 Banks sup. temp. sulcus -0.04 (-0.10, 
0.01 

0.093 0.14  0.15  0.02 

Precentral -0.03 (-0.08, 
0.02) 

0.17  0.23  0.15  0.01 Fusiform -0.08 (-0.13, 
-0.03) 

0.002 0.014  0.21  0.07 

Paracentral -0.04 (-0.09, 
0.01) 

0.134  0.19  0.09  0.02 Occipital lobe        

Frontal pole -0.12 (-0.20, 
-0.04) 

0.006  0.026  0.12  0.06 Lateral occipital -0.06 (-0.11, 
-0.01) 

0.012 0.037  0.23  0.04 

Parietal lobe         Pericalcarine -0.01 (-0.05, 
0.03) 

0.65 0.67  0.05  0.00 

Postcentral -0.05 (-0.09, 
− 0.01) 

0.022  0.06  0.12  0.04 Lingual -0.04 (-0.07, 
0.00) 

0.048 0.09  0.23  0.03 

Superior parietal -0.06 (-0.11, 
− 0.01) 

0.022  0.05  0.17  0.04 Cuneus -0.02 (-0.06, 
0.02) 

0.374 0.45  0.09  0.01 

Inferior parietal -0.07 (-0.12, 
-0.03) 

0.001  0.017  0.25  0.08 Cingulate        

Supra-marginal -0.07 (-0.12, 
-0.03) 

0.002  0.011  0.18  0.07 Caudal ant. cingulate -0.05 (-0.14, 
0.04) 

0.289 0.36  0.16  0.01 

Precuneus -0.08 (-0.12, 
-0.03) 

0.001  0.009  0.26  0.08 Rostral ant. cingulate -0.12 (-0.20, 
-0.04) 

0.004 0.019  0.15  0.06 

Insula -0.08 (-0.15, 
-0.02) 

0.013  0.037  0.08  0.05 Posterior cingulate -0.05 (-0.10, 
− 0.01) 

0.025 0.06  0.12  0.04          

Isthmus cingulate -0.07 (-0.13, 
-0.02) 

0.012 0.041  0.24  0.04 

Multivariable linear regression, adjusted for age, sex, years of education, estimated total intracranial volume and white matter hypointensities (n = 124). Beta es
timates are represented per 1 standard deviation of MD in the hypothalamus, BH-p: Benjamini-Hochberg - adjusted p-value, R2 - standard R2 of the model, Delta R2 - 
increase in model R2 due to addition of hypothalamic MD. BH-adjusted p-values were calculated using the set of raw p-values represented in the Table. 

Fig. 3. Associations between overall cognitive composite scores (a higher score indicates better performance) and hypothalamic z-scores of mean diffusivity (zMD; 
panel a) and fractional anisotropy (zFA; panel b), (n = 120); r - Pearson’s correlation coefficient (Pearson’s correlation). 
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after the MRI. In total, there were 249 annual neurocognitive assess
ments, including 124 within 3 months of the MRI and 125 at least one 
year after the MRI (Table S1). In linear mixed effect models, hypotha
lamic FA was a significant independent positive predictor of the overall 
neurocognitive scores (beta [95 % CI] = 0.15 (0.07, 0.24), BH-adjusted 
p-value = 0.002), as well as memory, language, attention, and visuo
motor cognitive domain scores (Table S14). Hypothalamic zMD was a 
significant negative predictor only for the language neurocognitive 
domain score but the p-value was not significant after the BH- 
adjustment (beta [95 % CI] = − 0.17 (− 0.31, − 0.04), BH-adjusted p 
value = 0.08). 

4. Discussion 

Drawing on evidence from animal studies demonstrating the detri
mental impact of hypothalamic aging on systemic aging, we set out to 
investigate the relationships of hypothalamic microstructure with brain 
structure and function in human aging. Using state-of-the-art MR 
diffusion imaging tailored to the anatomy of the aged brain, we found 
that 1) at older ages, the hypothalamus exhibits MRI characteristics that 
are consistent with altered microstructure, without observable age- 
related effects on hypothalamic volume; 2) MRI-derived hypothalamic 
microstructural features are associated with cortical thickness across 
multiple regions of the cortical mantle; 3) hypothalamic microstructural 
alterations and their relationship with cortical thickness are a feature of 
older age and are not observed in younger individuals; and 4) hypo
thalamic microstructural features are related to multi-domain neuro
cognitive performance, which was not explained by cortical thickness. 
The relationships between hypothalamic microstructure, cortical 
thickness and neurocognition were independent from microstructural 
features in other limbic regions that are functionally integrated with the 
hypothalamus and involved in neurocognition. This was the first study, 
to our knowledge, to demonstrate that aging-related MRI characteristics 
indexing hypothalamic microstructure may be a feature of neuro
cognitive aging in humans. 

4.1. Hypothalamic microstructure varies with age and sex in older, but 
not younger adults 

Development of MRI technology has allowed detection of micro
structural changes in small brain volumes, such as the hypothalamus. 
We leveraged this technology to study subclinical, aging-related changes 
in the hypothalamus of older adults. MR diffusion imaging was utilized 
due to its high sensitivity in detecting microstructural changes, 
including neuroinflammation and gliosis (Budde et al., 2011; Hagen 
et al., 2007), which are the characteristics identified in the hypothala
mus of aging animals (Zhang et al., 2013a). Two DTI parameters, MD 
and FA, were selected a priori for this analysis. Both capture 
multi-directional diffusion of water in the region of interest, but each 
provides qualitatively different information: MD measures overall 
magnitude of diffusion and FA measures directional coherence of 

anisotropic diffusion (Alexander et al., 2007). In our analyses, advanced 
age was associated with higher MD in the hypothalamus, which could be 
consistent with compromised microstructural integrity. Similar findings 
were noted in a study of over 550 adults (Thomas et al., 2019). Two 
other more recent cross-sectional studies (Spindler et al., 2023; Spindler 
and Thiel, 2022) did not find significant associations between age and 
MR diffusion metrics in the entire hypothalamic volume, although one 
of the studies reported a significant age-association in diffusion pa
rameters in the anterior-superior hypothalamus (Spindler et al., 2023). 
The differences in the findings between studies may have resulted from 
variation in study populations. The studies that did not find significant 
age-associations in hypothalamic diffusion parameters included limited 
samples of adults at advanced ages (Spindler et al., 2023; Spindler and 
Thiel, 2022), which may have reduced the power to detect changes that 
occur in the later decades of life, when deterioration of brain structure 
and function accelerates. Indeed, in our study the association between 
age and hypothalamic MD was only observed in the older cohort (aged 
65–97 years), while no significant association was found in the younger 
cohort (aged 18–63 years), suggesting that microstructural alterations in 
the hypothalamus represent a feature of later stages of neurocognitive 
aging. Intriguingly, while we did not find significant associations be
tween age and hypothalamic FA, we found that women in the older 
cohort had significantly higher hypothalamic FA compared to men. 
Higher FA indicates greater directional coherence of water diffusion and 
is characteristic of healthy white matter. Our findings of higher FA in the 
hypothalamus of older women may suggests greater preservation of 
tissue organization in aging, consistent with findings in aged female 
mice (Debarba et al., 2022). It should be noted, however, that FA in gray 
matter structures, while studied in various conditions (Abe et al., 2008; 
Bouix et al., 2013; Stock et al., 2020) ought to be viewed as a sensitive 
marker of microstructural alteration, rather than an indicator of a spe
cific pathologic process (or absence thereof). 

4.2. Hypothalamic microstructural alteration is associated with cortical 
thickness in older, but not younger adults 

In our analysis, greater hypothalamic MD was associated with lower 
cortical thickness in multiple brain regions. These associations were 
specific for the older cohort and were not observed in the younger and 
middle-aged participants. Reductions in cortical thickness are consid
ered a sensitive measure for aging-related cortical atrophy, which in
volves the entire cortical mantle, with regional variations in severity, 
and accelerates after the age of 60 years (Storsve et al., 2014). The as
sociations between hypothalamic MD and cortical thickness observed in 
our study largely followed cortical atrophy patterns associated with 
aging, with greatest effect sizes in medial orbitofrontal, frontal pole, 
inferior parietal, precuneus, inferior temporal, fusiform, and lateral 
occipital cortices (Lemaitre et al., 2012; Storsve et al., 2014). The as
sociations between hypothalamic MD and cortical thickness were un
changed when MD from other limbic structures was added to our 
models; therefore, the observed associations related to hypothalamus 

Table 4 
Associations between fractional anisotropy (FA) in the hypothalamus and neurocognition scores.   

Model A     Model B     
Composite score Beta (95 % CI) p BH-p R2 Delta R2 Beta (95 % CI) p BH-p R2 Delta R2 

Overall Cognition  0.16 (0.07, 0.25)  0.001  0.006  0.32  0.07  0.16 (0.07, 0.25)  0.001  0.003  0.33  0.07 
Executive  0.16 (0.02, 0.30)  0.024  0.029  0.21  0.04  0.16 (0.02, 0.30)  0.024  0.036  0.21  0.04 
Memory  0.15 (0.06, 0.23)  0.001  0.003  0.29  0.07  0.15 (0.06, 0.23)  0.001  0.006  0.29  0.07 
Language  0.17 (0.03, 0.30)  0.02  0.030  0.25  0.04  0.16 (0.03, 0.30)  0.021  0.025  0.25  0.04 
Attention  0.16 (0.05, 0.27)  0.006  0.012  0.23  0.05  0.16 (0.05, 0.27)  0.006  0.012  0.24  0.05 
Visuomotor  0.13 (0.00, 0.27)  0.053  0.053  0.18  0.03  0.13 (0.00, 0.27)  0.056  0.056  0.19  0.03 

Multivariable linear regression; Model A: adjusted for age, sex, years of education, estimated total intracranial volume and white matter hypointensities; Model B: 
Model A with additional adjustment for average whole-brain cortical thickness (n = 120–123). Beta estimates are represented per 1 standard deviation of FA in the 
hypothalamus, BH-p: Benjamini-Hochberg - adjusted p-value, R2 - standard R2 of the model, Delta R2 - increase in model R2 due to addition of hypothalamic FA. BH- 
adjusted p-values were calculated using the set of raw p-values represented in the Table, separately for Model A and B. 
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cannot be attributed to the decline in microstructural integrity of limbic 
system in general, supporting the hypothesis that aging of the hypo
thalamus may have a unique role in brain aging. 

4.3. Hypothalamic microstructure is associated with cognition in older 
adults 

Our analysis found strong associations between hypothalamic FA 
and overall, as well as domain-specific, neurocognitive performance, 
which was not explained by global cortical thickness. This finding is in 
contrast with a recent study that found no significant cross-sectional 
relationships between hypothalamic MR diffusion metrics and cogni
tion (Spindler and Thiel, 2022). The differences in the findings may be 
explained by two major differences in study designs. First, the LonGenity 
Brain MRI cohort which participated in our study was composed 
exclusively of older adults in the later decades of life when neuro
cognitive aging is accelerated. The aforementioned study (Spindler and 
Thiel, 2022) included individuals from adolescence to older ages, which 
could reduce power to detect neurocognitive decline that results from 
aging. Second, our analysis utilized a robust neurocognitive assessment 
with standardized neuropsychological measures, designed to provide 
high sensitivity and specificity to detect aging-related neurocognitive 
dysfunction that may not meet criteria for cognitive impairment. On the 
other hand, the Addenbrooke’s Cognitive Examination (ACE-R), utilized 
to assess cognition in the aforementioned study, is a brief screening test 
that was designed and validated as a clinical tool to detect mild de
mentia and differentiate between Alzheimer’s disease and fronto
temporal dementia (Mathuranath et al., 2000). Therefore, the study 
population and neurocognitive assessments employed in our analysis 
maximized the sensitivity to detect relationships between hypothalamic 
microstructure and cognition in the context of neurocognitive aging. 

Notably, our analysis identified that hypothalamic MD and FA were 
associated with different neurocognitive aging parameters. MD and FA 
are mathematically related (Alexander et al., 2007) and increase in FA is 
often accompanied by decrease in MD (and vice versa), therefore it may 
be intuitively expected that they associate with the same parameters, 
albeit in opposite directions. However, even though FA and MD are 
mathematically related, this does not imply that their linear correlations 
with other parameters will be identical. In one study, white matter FA 
was overall negatively associated, and MD was positively associated 
with age, but with notable regional differences and time dissociations; 
for instance, while changes in the FA were observed in middle-aged, 
changes in MD were not apparent until older ages (Giorgio et al., 
2010). It is thus not necessarily surprising that, in our analysis, we 
observed different linear associations of hypothalamic MD and FA with 
different features of neurocognitive aging. 

4.4. Postulated mechanisms for relationships between the hypothalamus 
and neurocognitive aging 

Given that our findings are mostly cross-sectional, we cannot draw 
conclusions about the mechanisms underlying the observed associa
tions. A possibility of reverse causation or an existence of a common 
underlying mechanism for both hypothalamic microstructural alter
ations and features of neurocognitive aging cannot be excluded with 
certainty. It is plausible, however, that aging of the hypothalamus affects 
brain aging, which is supported by several lines of evidence from animal 
models and humans. 

Aging of the hypothalamus may directly affect the rest of the brain. 
For instance, lateral hypothalamus modulates levels of arousal and 
motivation and is thought to be directly involved in certain types of 
learning and memory (Burdakov and Peleg-Raibstein, 2020); therefore, 
microstructural deterioration of the lateral hypothalamus could 
adversely affect neurocognitive performance in aging. Furthermore, in 
mice, aging-related microinflammation and gliosis in the hypothalamus 
deplete hypothalamic neurogenic stem/progenitor cell pools, which was 

postulated to adversely impact global neurogenesis in the brain (Zhang 
et al., 2017), although the presence of the neurogenic stem/progenitor 
cell in human hypothalamus remains to be determined. Aging of the 
hypothalamus may also affect the rest of the brain indirectly, through 
dysregulation of physiologic functions under hypothalamic control, 
including impairments in energy and glucose homeostasis, dysregula
tion of neuroendocrine pathways implicated in longevity (including 
GH/IGF-1, thyroid, gonadal and adrenal axes) (Brown-Borg, 2007; 
Zhang et al., 2013b), circadian dysfunction (Chang and Guarente, 2013) 
or altered sympathetic nervous system tone and hypertension (Pur
kayastha et al., 2011a). For instance, animal and human data implicate 
hypothalamic gliosis in obesity (Schur et al., 2015; Thaler et al., 2012) 
and glucose intolerance (Purkayastha et al., 2011b; Rosenbaum et al., 
2022), which are associated with reductions in brain volumes and 
neurocognitive decline (Antal et al., 2022; Taki et al., 2011). In our 
analysis, associations between hypothalamic microstructure and either 
obesity, glycemia or history of diabetes/hypertension were not signifi
cant, which is not surprising given the overall preserved metabolic 
health of the study cohort. Alternatively, it is possible that factors other 
than metabolic dysfunction play a predominant role in brain aging 
among individuals who successfully reach more advanced age. 

4.5. Limitations 

Our study has unique strengths, but its several limitations should also 
be noted. First, the cross-sectional design does not allow establishing 
causality or temporal relationships of the observed associations. How
ever, establishing rigorous cross-sectional associations in aging human 
cohorts is a necessary first step towards translating novel fundamental 
aging biology findings into humans, which can then help to identify 
actionable targets for slowing aging and its related morbidity. Our 
exploratory analysis which included longitudinal cognitive assessments 
supports the temporal relationship in which alteration of hypothalamic 
microstructure precedes cognitive decline. Second, the exact histologic 
correlates of the observed differences in hypothalamic MRI diffusion 
parameters are unknown. Studies in animal models point to the central 
role of hypothalamic gliosis in aging, while alterations of MRI diffusion 
metrics have been associated with histological evidence of gliosis in 
animals (Budde et al., 2011) and clinical evidence of gliosis in humans 
(Hagen et al., 2007). It is therefore plausible that microstructural 
changes detected with MRI diffusion metrics in our study correlate with 
gliosis in the hypothalamus. Future studies are needed to pursue more 
detailed analysis of the nature of the observed microstructural alter
ations in the hypothalamus. Third, given the proximity of the hypo
thalamus to the third ventricle, confounding of DTI metrics with CSF 
needs to be considered, due to possible inaccuracies in image registra
tion, segmentation, or partial volume effects at the CSF border, which 
theoretically could be exacerbated in older individuals due to hypo
thalamic atrophy. For this reason, our automated segmentation pro
cedure was specifically developed and validated in older adults. As a 
result, sensitivity of hypothalamic DTI metrics in our analysis was suf
ficient for detection of microstructural alterations relevant to features of 
neurocognitive aging. We did not find dependency of hypothalamic 
volume on age or on hypothalamic diffusion metrics, and when diffusion 
metrics were limited to the hypothalamic region distant from the CSF 
border, similar age-associations were observed. Furthermore, associa
tions between hypothalamic diffusion metrics and features of neuro
cognitive aging were significant above and beyond any associations with 
age. We therefore conclude that observed relationships between hypo
thalamic diffusion metrics, age and neurocognitive aging cannot be 
explained by age-biased partial volume effects. To gain further insights 
into the pathophysiology underlying the observed diffusion changes in 
the hypothalamus, such as the presence of extracellular water, future 
studies may consider using acquisition protocols with optimized sensi
tivity to high diffusion (Hoy et al., 2014), which would allow for a 
comparison of diffusion tissue models without and with free water 
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elimination. A free water elimination procedure may also be considered, 
with an appropriate data acquisition, to enhance sensitivity of DTI 
metrics to detect subtle longitudinal changes in hypothalamic DTI pa
rameters (Albi et al., 2017; Bergamino et al., 2016; Hoy et al., 2014). 
Fourth, we used theoretically derived cognitive composites, instead of 
an alternative approach of deriving cognitive composites with an 
empirical, data-driven approach. While empirical approach may more 
precisely map individual test scores to cognitive domains in a specific 
dataset, it does not clearly outperform theoretical approach and may be 
overly specific for a dataset and statistical method (Gibbons et al., 2012; 
Jonaitis et al., 2019; Wilhalme et al., 2017). Theory-based mapping of 
individual tests to cognitive domains is clinically relatable and may be 
more feasibly reproduced in other cohorts, although generalizability of 
specific domains needs to be carefully considered in the context of 
neurocognitive tasks that comprised each domain; for instance, atten
tion and visuomotor domains in our analysis are overlapping and results 
could differ if one were to include different attention and visuomotor 
speed tasks. Fifth, we used FreeSurfer-generated white matter hypo
intensities on T1-weighted images, which may underestimate white 
matter lesion burden compared to T2-weighted-FLAIR-based white 
matter hyperintensity measurement, although prior studies have found 
that hypointensities may be a better (Haller et al., 2013) or equivalent 
(Wei et al., 2019) approach. However, sensitivity analysis using 
T2-weighted-FLAIR-based Age-Related White Matter Changes scale of 
hyperintensity volume, did not alter the pattern of results. Sixth, we 
analyzed a study cohort with overall preserved metabolic health, which 
limited the power to detect previously observed associations of hypo
thalamic diffusion parameters with obesity. However, to meet the study 
goal of establishing the relationships between hypothalamic and neu
rocognitive aging, it was advantageous to study a cohort with limited 
confounding by metabolically unhealthy aging. Finally, the LonGenity 
Brain MRI study cohort has a unique ethnic and socioeconomic 
composition, which can raise the question of generalizability of our 
results. Nevertheless, greater homogeneity of the study population may 
give us the power to detect biological associations. Furthermore, the 
findings from LonGenity have been previously validated in other cohorts 
(Rozing et al., 2010; Vergani et al., 2006); thus, the results from this 
study may likewise be generalizable. 

5. Conclusions 

To our knowledge, this is the first study to demonstrate that MRI 
characteristics of the hypothalamus consistent with aging-related 
microstructural alteration are associated with features of neuro
cognitive aging in humans. These findings provide evidence in support 
of further studies to elucidate the role of the hypothalamus in human 
aging, with a goal of developing interventions targeted at preserving 
hypothalamic structure and function to prolong health span in humans. 
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