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Automated characterization of
the gray matter white matter
distribution demonstrates age-
related decline
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Neuroimaging techniques offer valuable insights into the structural characteristics of the brain. For
example, a salient feature of the cerebrum is the distinct transition of voxel intensity at the interface
of gray matter (GM) and white matter (WM). Leveraging the inherent difference in tissue composition
- lower GM and higher WM signal on T1-weighted (T1W) magnetic resonance imaging (MRI) — we
introduce a novel metric, distance between peaks of WM and GM intensities, which unlike GM/WM
contrast does not rely on segmentation and demonstrate its efficacy in capturing age-related effects.
A single 3D T1W whole brain MRI (MP-RAGE, 1 mm isotropic voxels) image was acquired at 3 Tesla
from each of 178 healthy participants (18-91 years (54.78 +21.37), 103 Female) between 2019 and
2023. Before peak differentiation calculation, non-brain tissue was removed, and voxel intensities
were corrected for RF coil profile. We define peak differentiation as the difference between means of
two Gaussians fitted to the TIW voxel intensities, scaled by their common standard deviation. Age
dependence of peak differentiation is examined using a linear model with biological sex included

as a covariate. Similar analysis was performed by limiting to voxels within 5 mm of the Freesurfer-
defined cerebral gray matter-white matter interface (GWI) in six lobes: orbitofrontal, frontal, occipital,
temporal, parietal, and cingulate. Reduced whole-brain peak differentiation was associated with older
age (B3, =-0.012, 95% CI [-0.0132, -0.0105], p<0.001), indicating a decline in WM-GM distribution
sharpness with advancing age. Each GWI subregional peak differentiation exhibited the same pattern
of decline with age, but differed in magnitude region (p <0.001). The cingulate region exhibited the
sharpest decline with age ( 8 ; =-0.014, 95% CI [-0.0160, - 0.0126], p<0.001). We demonstrate
feasibility of an automated whole brain peak differentiation measurement to characterize brain
aging in a group of healthy individuals, with minimal reliance on segmentation or other processing,
with implications for understanding normal trajectories and identifying pathological deviations from
expected aging processes.

Tissue composition of brain white matter (WM) and gray matter (GM) differ. WM is predominantly comprised
of parallel bundles of myelinated axons, whereas GM exhibits a much greater proportion of structures such as cell
bodies and dendrites. Due to differences in their magnetic properties, a sharp distinction in voxel intensity can
be appreciated at the gray matter-white matter interface (GWI) on T1-weighted images (T1W) acquired using
magnetic resonance imaging (MRI). The imaging features mirror the appearance of the GWI on gross anatomy.
Quantification of this imaging feature, especially on widely available T1W image, could facilitate assessment of
brain health and detection of pathological processes at the GWL

The GWTI is a site of pathology in many brain disorders, including traumatic brain injury'3, focal cortical
dysplasia?, Zika virus infection®, progressive multifocal leukoencephalopathy®, multiple sclerosis’ and
Alzheimer’s disease®. Prior neuroimaging studies of these disorders have largely reported qualitative features
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of the GWI?*-6. Normal aging also alters the GWI, with prior studies reporting age-related changes in tissue
contrast at this location on TIW MRP. To quantify the GWI tissue transition by computing tissue contrast,
for example, studies have segmented GM and WM to selectively extract voxel intensity from each tissue class,
for example at 35% thickness of cortical GM and 1 mm into WM?. This approach requires preprocessing to
accurately sample GM and WM voxel intensities and could be impacted by segmentation errors. Furthermore,
cortical thickness itself is known to decrease with age and may conflict with cortical GM intensity sampling.
Furthermore, there can be utility in characterizing GM-WM distribution instead of intensity contrast.

In this study, we propose an approach which takes the unsegmented brain as an input and measures the
separation between the distributions of WM and GM voxel intensities as an index of tissue contrast around
the GWI. We illustrate the method by detecting expected age-related decline in tissue differentiation on TIW
images around the GWI. In addition to existing analysis techniques such as region of interest voxel intensity and
GM/WM contrast, this method could be used to identify loss of normally sharp tissue distinction around the
GWT in the setting of disease.

Methods

Study cohort

This analysis includes data from a total of 178 healthy participants, spanning 18 to 91 years of age (54.78 + 21.37)
of which 103 are females, enrolled in two normative lifespan cohorts at Albert Einstein College of Medicine
from 2019 to 2023, 76 participants from the Einstein Aging Study (EAS)!” and 102 from the Einstein Lifespan
Study (Lifespan)!!. Both studies were approved by the institutional review board of Albert Einstein College of
Medicine, obtained written informed consent from each participant, and complied with HIPAA. All methods
were performed in accordance with the relevant guidelines and regulations. Inclusion criteria for the EAS
included residence in the greater New York City area, English fluency, age of 70 or older. EAS exclusion criteria
included dementia, visual or auditory impairments that would preclude neuropsychological testing, active
psychiatric symptomatology that would interfere with the ability to complete assessments, contraindication to
MRI and non-ambulatory status. Lifespan inclusion criteria included residence in the greater New York City
area, English fluency, and age 18-65 years. Lifespan exclusion criteria included history of head injury, diagnosed
psychiatric disorder (Bipolar Disorder, Schizophrenia, Generalized Anxiety Disorder, Major Depression,
Substance Use Disorder), neurological disorder other than headache, diabetes, hypertension, heart disease,
stroke, contraindication to MRI or recreational drug use within previous thirty days.

Image acquisition and processing

All data were collected on the same 3.0T Philips Achieva TX scanner using a 32-channel head coil (Philips
Medical Systems, Best, The Netherlands). 3D T1 weighted magnetization-prepared rapid acquisition gradient
echo (MPRAGE) imaging was performed with TR/TE/TI = 9.9/4.6/900ms, a = 8°, SENSE factor along SI/RL =
2/2.6, 1 mm isotropic resolution, 240 x 188 x 220 matrix. MPRAGE train length = 154 along z-phase encode, time
between inversions = 2375msec, bandwidth = 145.1 Hz/mm, and scanner’s built-in receive profile uniformity
correction. An auxiliary field map scan was acquired using FOV = 250 mm, 3 mm isotropic resolution, TR
= 26ms, TE/ATE = 2.5/2.3ms, a = 26° and SENSE factor = 2 (anterior-posterior) x 2 (head-foot). The field
map is used to correct small susceptibility-induced distortions in T1-weighted scans'?!>. The relative separation
between GM and WM tissue peaks remains stable across physiologically relevant TI values (Supplemental Fig.
1). Non-brain tissue was removed using SynthStrip'%; in addition to the receive coil profile correction inherent
to 3.0T Philips Achieva TX scanner, which involves image reconstruction based on in situ coil calibration,
correction for RF coil profile was calculated using FMRIB’s Automated Segmentation Tool (FAST)!>¢. All
images underwent structured assessment for image quality, motion artifacts and quality of brain extraction,
performed by experienced, trained raters.

Peak differentiation calculation
Whole-brain T1-weighted voxel intensities (Fig. 1 (a)) were linearly scaled to a range of 0 to 3000. The histogram
exhibits two peaks, corresponding to intensities of voxels in gray and white matter (Fig. 2).

To quantify distance between these two peaks, all voxels with scaled intensities between 400 and 2800
were fit to a mixture of two gaussian distributions of equal variance. The Gaussian distribution is an excellent
approximation to Rician distribution for signal-to-noise ratios (SNR) above 5, which is definitely fulfilled
for gray and white matter signals'’. To stabilize fitting, the 400-2800 scaled intensity window was selected
empirically based on visual inspection of the intensity distributions to exclude extreme histogram tails while
preserving the GM and WM peaks. The lower cutoft largely excludes CSF voxels, while the upper cutoff removes
the small number of high-intensity vascular voxels. Importantly, modest adjustments to these window limits are
not expected to alter the peak differentiation metric.

Peak differentiation is defined as the difference in means (x4, it 5) of the two fitted Gaussian distributions,
scaled by their common standard deviation ( o ) as shown in Eq. I:

peak dif ferentiation = ALQ;*M (1)

Maximum likelihood estimates of these parameters were obtained using the ‘mclust’ package in R'®.
For each participant, whole-brain peak differentiation using all brain voxels (Fig. 1 (a)) was calculated. A
graphical representation of the peak differentiation method is shown in Fig. 2.
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Fig. 1. (a) Whole brain segmentation includes all voxels. (b) Lobar segmentation includes voxels in white and
gray matter within 5 mm from the Freesurfer defined GWIL.
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Fig. 2. Sample peak differentiation calculations. Whole brain voxel intensity histograms from a 27-year-old
female and an 87-year-old female. Peak differentiation calculations are shown.

Association of peak differentiation with age
We fit the following linear model to the whole brain peak differentiation as a function of age and other covariates:

Yi=pBo+ B, Age; +8 ,Sex;+ e; (2)

In Eq. 2, Y, denotes the whole brain peak differentiation for participant i; 3  is an intercept term; Age; is the i""
subject’s age at which imaging was collected; coefficient 3 ; denotes the independent cross-sectional association
of age with the peak differentiation. Biological sex was included as covariate Sex;; coefficient 3 , denotes the
association of biological sex (male compared to female) with peak differentiation and e; is a random error term.
Analyses were performed in RY.
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Subregional peak differentiation

To investigate regional differences, we segmented brain into orbitofrontal, frontal, occipital, temporal, parietal,
and cingulate subregions defined to be within 5 mm of the Freesurfer 7-defined cerebral GWI? (Fig. 1 (b)).
Voxels were sorted into regions by their shortest Euclidean distance orthogonal to the plane of the GWT interface
which was also segmented into the aforementioned regions. Peak differentiation was then computed using voxels
within each of these six subregions (Eq. 1).

To test if the peak differentiation association with age varies across the six brain regions, we compared two
linear mixed effects models using likelihood ratio tests using R library Ime4. One model (Eq. 3) assumes the
same effect of age across the different regions; the other model (Eq. 4) allows different effects of age for each
region.

Yir=8,0+ar+ 8, Age, + 5 ,Sex, + eir (3)
Yir =080+ ar+ g Age;, + B ,Sex, +eir 4)

In Eqgs. 3 and 4, 3, represents the random subject effect for participant i; Y., denotes the regional peak
differentiation for participant i in region R; o r denotes the region-specific intercept offset (e.g. “parietal”),
> a,=0. 3, in(Eq.3) is the common age effect in that model, and /3 , ; in (Eq. 4) represents the region-
specific age effect.

Measure validation

To evaluate whether our peak differentiation measure is robust to the noise of the images, we compared the
whole brain peak differentiation on paired low and high noise images on the same participants at the same visits.
For each of two participants from whom we acquired 6 repeated TIW scans at a single visit, a low noise image
was generated by averaging the six TIW scans. The images of one scan are of high noise. Since the noise level of
the high noise images should be square root of 6=2.45 times that of the noise in low noise images. If o in Eq. 1
was dominated by noise of the image, we expect peak differentiation of the low noise images to be similarly
greater than those of corresponding high noise images.

Furthermore, to verify that the observed association between peak-differentiation and age is not driven
primarily by o, we tested the association between o, ul, u2 and u2 —pl and age using a linear regression model,
with biological sex as a covariate.

It is possible to perform the peak differentiation calculation without FAST RF coil profile correction and we
include the calculations and age association analyses to further validate the robustness of this measure.

We also calculated intracranial volume (ICV) using Freesurfer 72 and included it as a covariate.

Results

Lower peak differentiation over the whole brain is significantly associated with older age (5, = -0.012, 95%
CI [-0.0132, -0.0105], p<0.001) (Fig. 3; Table 1). Peak differentiation for each GWTI subregion shows the same
pattern of decline with age (Fig. 4; Table 1), but the declines differ by region (p <0.001). Therefore, we report
statistical findings from Eq. 4, with the cingulate region exhibiting the sharpest decline with age (3 ; = -0.0143,
95% CI [-0.0160, —0.0126]; Table 1). We found no statistically significant effect of biological sex on peak
differentiation for whole brain or for any of the six GWI subregions (Table 1).

For each of two participants that had repeated TIW images at a single visit, the whole-brain peak differentiation
of the low noise and high noise images were nearly identical, with a ratio at 1.01 and 1.004 respectively, suggesting
that our peak-differentiation measure is robust to the noise level of the images. The signal to noise ratio in the
white matter of individual high-noise images is about 40.

Unlike peak differentiation association with age, the directionality of standard deviation association with
age is different in different regions (Supplemental Table 1). Whole-brain, orbitofrontal region, occipital region,
and temporal region standard deviation associations were positively associated with age; frontal and cingulate
regions have negative associations with age. Parietal region standard deviations were not associated with age
(Supplemental Table 1). u2 — 1 is inversely associated with age in all regions but not in the whole brain measure
(Supplemental Table 2). o, i1, and y2 are associated with age in some regions but not others (Supplemental 1-4).

We show similar peak differentiation associations with age in the whole brain and GWTI subregions when
we used non- bias field corrected images to calculated peak differentiation (Supplemental Table 5). We show
that age dependence of peak differentiation remains significant with ICV included as a covariate and ICV, as a
covariate, is not significantly associated with peak differentiation (Supplemental Table 6).

Discussion

Peak differentiation recapitulates expected T1W aging associations in a health cohort
Contrast between GM and WM tissues on T1W of a young healthy brain is visually sharp but becomes less
distinct at older age. Decline of peak differentiation at older age reflects this merging of the GM and WM pixel
intensities. The linear correlation between age and peak differentiation we identified across a wide age range
demonstrates a consistent aging effect in healthy individuals from at least the third decade. This finding points to
aging as an ongoing process across adulthood; whole brain peak differentiation is expected to decrease by 0.12 +
0.0067 with one decade of aging. Prior studies have reported age-related lower WM volume?!, GM volume??, and
cortical thickness** on TIW imaging. Our results are consistent with prior qualitative?* and quantitative®?>-’
findings of lower GM/WM contrast in association with older age. Although conceptually distinct from absolute
T1-weighted intensity, our peak-differentiation metric is consistent with prior imaging-histology correlations
showing that T1-weighted hypointensities co-localize with reduced axonal density on postmortem histology?®and
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Fig. 3. Whole Brain peak differentiation associations with age (n=178). Peak differentiation is plotted on
y-axis. Chronological age is plotted on the x-axis. Lower peak differentiation is associated with higher age.

Age Biological sex

Region E 1 (peryear) | p_yalue a 2 (Mvs. F) | p_value | Adjusted R?
Whole brain —-0.0118326 <0.001 | 0.0077637 0.79 0.6394
Orbital (within 5 mm from GWI) —-0.0127646 <0.001 | 0.0060184 0.875 0.1157
Occipital (within 5 mm from GWI) | — 0.006067 <0.001 | -0.004394 0.867 0.3611
Parietal (within 5 mm from GWI) - 0.0126266 <0.001 | -0.0356119 0.314 0.574
Cingulate (within 5 mm from GWI) | —0.0143189 <0.001 | —0.0525841 0.165 0.6019
Frontal (within 5 mm from GWI) -0.012727 <0.001 | 0.005779 0.876 0.5591
Temporal (within 5 mm from GWI) | — 0.008980 <0.001 |-0.018127 0.458 0.5881

Table 1. Peak differentiation associations with age peak differentiation is significantly associated with
increased age in whole brain, and regional calculations. Biological sex is included as a covariate and was found
to not be associated with peak differentiation. Effect age describes association of peak differentiation with one
year increase in chronological age.

with areas of hypoperfusion?” and microstructural changes on imaging>. T1-weighted hypointensities have also
been shown to co-vary with multiple sclerosis disease progression®!. These findings support the interpretation
that diminished GM-WM differentiation reflects microstructural compromise. While the specific biological
mechanisms underlying this peak measure remain unclear, potential contributors may include white matter
demyelination, gray matter dendritic pruning, or inflammation. However, our metric does not directly
differentiate among these possibilities, and further studies would be needed to clarify the underlying mechanisms.

The whole-brain peak differentiation is distinct from GM/WM contrast, which also declines with
age®20:25:27:32-34 The whole-brain peak differentiation measure we report, however, does not require that voxel
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Fig. 4. Regional Peak Differentiation associations with age (n=178). Peak differentiation is plotted on y-axis.
Chronological age is plotted on the x-axis. Lower peak differentiation is associated with higher age in each
lobar region.

intensities be sampled at a specified distance from the GWI, as in methods previously reported to quantify
GM/WM contrast®?*?. Additionally, GM/WM contrast is essentially a mean intensity comparison, with no
consideration of the distribution of voxel intensities. In contrast, whole-brain peak differentiation provides
a summary metric derived from all brain voxel intensities, including deep and superficial WM and GM. By
assessing the intensity distribution across all voxels, it offers a more robust, comprehensive reflection of global
tissue differences, especially in regions where surface reconstruction is challenging. For example, when image
intensities are nearly homogeneous within gray and white matter respectively, the value of the proposed peak
differentiation will be very high because of small denominator in Eq. 1. When image intensities within tissues
are heterogeneous, the denominator grows while the numerator remains as before reducing the value of peak
differentiation. On the other hand, previously suggested methods to quantify GM/WM contrast®2* will produce
nearly identical values in both of these scenarios because they are essentially a mean intensity comparison.

Peak differentiation is also distinct from WM volume?!, GM volume??, and cortical thickness?’, which only
account for anatomical size without deriving information from voxel intensities. In contrast, whole-brain peak
differentiation provides a summary metric derived from all brain voxel intensities, including deep and superficial
WM and GM. By assessing the intensity distribution across all voxels, it offers a robust, comprehensive reflection
of global tissue differences, especially in regions where surface reconstruction is challenging. This quantitative
approach can characterize GWI effects that are not necessarily visible on inspection of images (Fig. 2). Our whole
brain peak-differentiation metric is fully automated, does not require tissue segmentation or lesion masking,
and includes normalization by standard deviation which carries information about tissue heterogeneity. These
features make the method sensitive, computationally efficient, and potentially easier to implement across diverse
clinical workflows. Rather than focusing on a disease-specific cohort, we provide a proof-of-concept in a large
healthy sample, emphasizing the metric’s potential applicability to a range of future studies.

Our histogram-based contrast approach shares conceptual similarity with that of De Guio et al. (2014), who
examined intensity distributions in the context of CADASIL*. However, their method included lesion masking
and pathology-specific segmentation steps, which were not used in our healthy aging cohort. Additionally, their
contrast metric was not normalized by standard deviation, and therefore did not take tissue heterogeneity into
account. Moreover, their analysis did not explicitly characterize age-related effects. Our study builds on these
ideas by offering a more generalizable methodology, requiring minimal segmentation and registration, for
exploring gray-white matter contrast in normative populations.

Overall, this metric may complement established biomarkers such as cortical thickness, regional volume
and GM/WM contrast by providing a global, voxel-based measure of tissue differentiation, which accounts for
tissue heterogeneity and requires minimal segmentation, thereby offering an alternative lens on structural brain
differentiation.

Limitations

Our study did not include extensive validation using repeated scans on multiple scanners, which would be a
valuable next step. The small, two-participant, stability study we included nevertheless demonstrates the peak
differentiation is not driven by SNR considerations, thereby showing its robustness.
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Voxel intensity on T1W images is on an arbitrary scale determined by tissue properties such as T1 of the tissue
and several instrumental factors such as flip angle, receive coil profile, bandwidth, partial Fourier factor and
voxel size. Therefore, image intensities are first linearly scaled to be 0-3000. Furthermore, peak differentiation
is scale free because it is defined as a ratio of difference in image intensities to their standard deviation. Non-
instrumental factors such as changes in tissue T1 or proton density are those that drive the peak differentiation
sensitivity to aging.

An additional limitation is the use of a Gaussian mixture model with constrained equal variances to define
peak differentiation. This assumption was adopted to stabilize fitting and enforce a standardized, scale-free metric
across participants, although it may not perfectly capture asymmetries in the true tissue intensity distributions.
As seen in Fig. 2, minor deviations between the fitted mixture and the empirical histogram suggest mild model
misalignment. Accordingly, peak differentiation should be interpreted as a global index of GM-WM separation
rather than a precise biophysical estimator of tissue class. Nevertheless, the robust and regionally consistent age
associations observed across the cortex indicate that the primary biological inferences are unlikely to be driven
by this modeling constraint.

Besides carrying biological information, voxel intensity in T1W images is also sensitive to positioning of the
head in the radiofrequency coil. Spatial variation of coil sensitivity across the brain may partially obscure the
peaks in the histogram. Despite addressing this issue on two levels -- a correction during image reconstruction
on the scanner and post-acquisition preprocessing using FSLs FAST - the residual uncorrected variation may
have remained in part and could be more prominent if a surface coil were used. Additionally, our finding that
peak differentiations derived from cerebral GWI subregions recapitulate whole-brain findings makes a regional
bias unlikely. Bias fields effects would also not explain the robust age associations characterized in this study
which largely remain the same in the absence of the corrections (Supplemental Table 5). Small susceptibility
correction in TIW images is a standard step in our processing pipelines but for the purposes of this analysis
likely has negligible effect and could be skipped.

Peak differentiation is minimally sensitive to noise. In our preliminary verification, the ratio of low noise
whole-brain peak differentiation to high noise peak differentiation was only 1.01 and 1.004. If noise had a strong
influence, this ratio would be around 2.45. This confirms that peak differentiation is minimally sensitive to noise
and is a valid measure of GM and WM distribution, distinct from GM/WM contrast, which relies on sampled
mean intensity ratios.

Peak differentiation is not sensitive to the overall scaled TIW image intensity because we intentionally
defined the measure as a ratio scaled to the standard deviation. Furthermore, to characterize the role of standard
deviation in the association of peak differentiation and age, we tested for association of standard deviation with
age. Standard deviation is shown to be differentially associated with age in different regions (Supplemental Table
1), in comparison to peak differentiation which declines with age in all regions. This suggests that associations
of peak differentiation with age are driven by GM-WM distributions, and that incorporating standard deviation
is necessary to account for regional signal variations. Furthermore, standard deviation associations with age
may partially describe age-related changes in tissue heterogeneity and density (Supplemental Table 1). However,
u2 —pl is also shown to be associated with age (Supplemental Table 2). These associations are then incorporated
into the scale-free peak differentiation measure.

Future directions

Subject to further confirmation and validation in aging and in brain diseases, the whole-brain peak differentiation
approach could potentially serve as a quantitative metric of brain age, to detect subtle changes like accelerated
aging or pathology that might otherwise go unnoticed. Future studies can probe how deviations from age-
appropriate peak differentiation norms may indicate abnormal aging or diffuse brain pathology, even in the
absence of visible abnormalities. Regional peak differentiation from juxtacortical regions could also enhance
sensitivity to pathology affecting the GWI, such as neurodegenerative disease and trauma. Subsequent studies
could explore peak differentiation as an imaging marker for neurodegenerative diseases, building upon prior
research that links a lower GM/WM intensity ratio to individuals with mild cognitive impairment who progress
to dementia on 3-year follow up*. While further validation is needed, combining peak differentiation with
measures such as GM/WM intensity ratio, cortical thickness and amyloid PET could be explored to enhance
prediction of Alzheimer’s Disease status and prognosis®’. It is not our intent to replace GM/WM contrast but to
instead offer an additional measure for GM-WM distribution that can readily be implemented in clinic.

Conclusion

In conclusion, we demonstrate feasibility of an automated whole brain peak differentiation measurement to
characterize brain aging in a healthy cohort, with minimal reliance on segmentation or other processing. Future
implementation for routine assessment of standard clinical TIW images could serve as a screening approach
feasible to implement in a clinical setting.

Data availability

Data and code will be made available upon request from the corresponding author M.L.L.
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